Math 461 Exam #2 Nov. 17, 2000

- 1. (30) Let $S = Span((1,0,1,0)^T, (0,1,0,1)^T, (1,2,3,4)^T).$
 - a) Find an orthogonal basis for S.
 - b) Find a basis for S^{\perp} .
- 2. (20) Let u_1, u_2, u_3 be an orthonormal set in an inner product space V.
 - a) Calculate $||u_1 2u_2 + 4u_3||$.
 - b) Show that $u_1 2u_2$ is orthogonal to $2u_1 + u_2$.
 - c) Are u_1, u_2, u_3 linearly independent?
 - d) Is u_1, u_2, u_3 a basis for V?
- 3. (25) Let $L: P_3 \to P_4$ be the map L(p) = xp(x).
 - a) Show that L is a linear transformation.
 - b) Find the Kernel and Range of L.
 - c) Find the matrix of L with respect to the bases $[x-1, 1, x^2]$ of P_3 and $[1, x, x^2, x^3]$ of P_4 .

4. (20) Show that if A is an $m \times n$ matrix and x is in $N(A^T A)$, then x is in N(A).

5. (30) True (always true), False (always false), Maybe (sometimes true and sometimes false, depending on A, S, etc.) or short answer. A is a 4×8 matrix, and S is a subspace of a seven dimensional inner product space V. Also A has rank 3 and S has dimension 3.

- a) The null space N(A) has dimension 1.
- b) If $x \perp y$ and $y \perp z$ then $x \perp z$.
- c) Let x_1 and x_2 be two different least squares solutions to Ax = b. Then $Ax_1 = Ax_2$.
- d) If $[u_1, u_2, u_3]$ is a basis for S, and $x \perp u_i$ for each i, then x is in S^{\perp} .
- e) If AB = 0 then the column space of B is contained in N(A).
- f) If B and C are similar matrices then det(B) = det(C).
- g) dim $S^{\perp} =$ ___.
- h) dim $N(A^T) =$ ___.
- i) Give an example of an inner product on C[0, 2].
- j) If $[u_1, u_2, u_3]$ is an orthogonal basis for S, what is the formula for the projection of x to S?