1. (30) Let $S=\operatorname{Span}\left((1,0,1,0)^{T},(0,1,0,1)^{T},(1,2,3,4)^{T}\right)$.
a) Find an orthogonal basis for S .
b) Find a basis for S^{\perp}.
2. (20) Let u_{1}, u_{2}, u_{3} be an orthonormal set in an inner product space V.
a) Calculate $\left\|u_{1}-2 u_{2}+4 u_{3}\right\|$.
b) Show that $u_{1}-2 u_{2}$ is orthogonal to $2 u_{1}+u_{2}$.
c) Are u_{1}, u_{2}, u_{3} linearly independent?
d) Is u_{1}, u_{2}, u_{3} a basis for V ?
3. (25) Let $L: P_{3} \rightarrow P_{4}$ be the map $L(p)=x p(x)$.
a) Show that L is a linear transformation.
b) Find the Kernel and Range of L.
c) Find the matrix of L with respect to the bases $\left[x-1,1, x^{2}\right]$ of P_{3} and $\left[1, x, x^{2}, x^{3}\right]$ of P_{4}.
4. (20) Show that if A is an $m \times n$ matrix and x is in $N\left(A^{T} A\right)$, then x is in $N(A)$.
5. (30) True (always true), False (always false), Maybe (sometimes true and sometimes false, depending on A, S, etc.) or short answer. A is a 4×8 matrix, and S is a subspace of a seven dimensional inner product space V. Also A has rank 3 and S has dimension 3 .
a) The null space $N(A)$ has dimension 1 .
b) If $x \perp y$ and $y \perp z$ then $x \perp z$.
c) Let x_{1} and x_{2} be two different least squares solutions to $A x=b$. Then $A x_{1}=A x_{2}$.
d) If $\left[u_{1}, u_{2}, u_{3}\right]$ is a basis for S, and $x \perp u_{i}$ for each i, then x is in S^{\perp}.
e) If $A B=0$ then the column space of B is contained in $N(A)$.
f) If B and C are similar matrices then $\operatorname{det}(B)=\operatorname{det}(C)$.
g) $\operatorname{dim} S^{\perp}=\ldots$.
h) $\operatorname{dim} N\left(A^{T}\right)=$
i) Give an example of an inner product on $C[0,2]$.
j) If $\left[u_{1}, u_{2}, u_{3}\right]$ is an orthogonal basis for S, what is the formula for the projection of x to S ?
