1. (30) Let $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 2 & 4 \\ -3 & 2 & -1 \\ 0 & 2 & 5\end{array}\right)$. Find an orthonormal basis for the column space of A. Find the $Q R$ factorization of A. Find the least squares solution to $A x=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)^{T}$.
2. (20) Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Find the matrix of the linear transformation L_{A} with respect to the basis $\left[\binom{2}{1},\binom{1}{0}\right]$ of R^{2}.
3. (20) Let u_{1}, u_{2}, u_{3} be an orthonormal set in an inner product space V.
a) Calculate $\left\|u_{1}-2 u_{2}+4 u_{3}\right\|$.
b) Show that $u_{1}-2 u_{2}$ is orthogonal to $2 u_{1}+u_{2}$.
c) Are u_{1}, u_{2}, u_{3} linearly independent?
d) Is u_{1}, u_{2}, u_{3} a basis for V ?
4. (15) What are similar matrices? Give an example of two different 2×2 matrices which are similar. Give an example of two 2×2 matrices which are not similar and say why they are not.
5. (15) Let A and B be matrices so that $A B=0$. Show that the column space of A^{T} is orthogonal to the column space of B.
6. (25) Let V be an inner product space and let x be any vector in V. Define a map $L_{x}: V \rightarrow R$ by setting $L_{x}(v)=\langle x, v\rangle$ for all $v \in V$.
a) Show that L_{x} is a linear transformation.
b) Find the Kernel and Range of L_{x} if x is not 0 .
c) Find the Kernel and Range of L_{0}.
d) Show that if V is finite dimensional and $K: V \rightarrow R$ is any linear transformation, then $K=L_{x}$ for an appropriate x. (Hint: Consider an orthonormal basis of V and the matrix of K with respect to this basis.)
