Math 461 Mini Test # 2, section 0601

Instructions: Do three of the following four problems. Choose one of the three to be worth ten points instead of 20.

Name:_____

20 point problems: _____and _____

10 point problem: _____

1. (20) Consider the following matlab output.

>> [<i>I</i> =	[3	6	1	1;1	2	3	-5;	2	4	0	2]
A =												
	3	3		6		1		1				
	1			2		3		-5				
	2	2		4		0		2				
>> 1	ref((A)										
ans	=											
	1			2		0		1				
	C)		0		1		-2				
	C)		0		0		0				

a) What is the rank of A?

The rank is 2 since there are two pivots.

b) Find bases for the column space of A, the row space of A, and the null space of A and determine the dimensions of these vector spaces.

A basis for the row space is $\{[1\ 2\ 0\ 1]^T, [0\ 0\ 1\ -2]^T\}$. A basis for the column space is the pivot columns $\{[3\ 1\ 2]^T, [1\ 3\ 0]^T\}$. From the rref, a basis for the null space is $\{[-2\ 1\ 0\ 0]^T, [-1\ 0\ 2\ 1]^T\}$. All have dimension two.

2. (20) Let *H* be the set of 2×2 symmetric matrices. (A matrix *A* is symmetric if $A = A^T$. So for example I_2 , $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, and $\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$ are all symmetric. A 2×2 matrix is symmetric if and only if its two off-diagonal entries are equal.)

a) Show that H is a subspace of $M_{2\times 2}$.

The zero matrix is symmetric. If A and B are symmetric, then $(A+B)^T = A^T + B^T = A + B$ so A + B is symmetric. If A is symmetric and c is a scalar then $(cA)^T = cA^T = cA$ so cA is symmetric. So the symmetric matrices form a subspace.

b) Find a basis for H.

Symmetric matrices have the form $\begin{bmatrix} a & c \\ c & b \end{bmatrix}$ so one example of a basis is given by $\{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\}$. Those three matrices are clearly linearly independent and span the symmetric matrices.

c) What is the dimension of H?

The dimension is three since a basis has three elements.

3. (20) Let $\mathcal{B} = \{1, t - 1, t^2 - 2t + 1\}$ and $\mathcal{C} = \{t, 1, t^2\}$ be two bases for P_2 . Find the coordinates $[t^2 + 3t - 4]_{\mathcal{B}}$ and $[t^2 + 3t - 4]_{\mathcal{C}}$. In other words, find the \mathcal{B} -coordinate vector for $t^2 + 3t - 4$ and find the \mathcal{C} -coordinate vector for $t^2 + 3t - 4$.

By inspection, $[t^2 + 3t - 4]_{\mathcal{C}} = [3 - 4 \ 1]^T$. We could find

$$[t^{2} + 3t - 4]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{C}} \begin{bmatrix} 3\\-4\\1 \end{bmatrix} = P_{\mathcal{C}\leftarrow\mathcal{B}}^{-1} \begin{bmatrix} 3\\-4\\1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2\\1 & -1 & 1\\0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3\\-4\\1 \end{bmatrix}$$

which could be solved by row reducing $\begin{bmatrix} 0 & 1 & -2 & 3 \\ 1 & -1 & 1 & -4 \\ 0 & 0 & 1 & 1 \end{bmatrix}$. You could also see by inspection that $t^2 = (t^2 - 2t + 1) + 2(t - 1) + 1$ and t = (t - 1) + 1 so

$$t^{2} + 3t - 4 = (t^{2} - 2t + 1) + 2(t - 1) + 1 + 3(t - 1) + 3 \cdot 1 - 4 \cdot 1 = (t^{2} - 2t + 1) + 5(t - 1) + 0 \cdot 1$$

So $[t^{2} + 3t - 4]_{\mathcal{B}} = [0 \ 5 \ 1]^{T}$.

4. (20) Short answer:

- a) $\{b_1, b_2, \dots, b_n\}$ is a basis for a subspace H of V if ______. it is linearly independent and spans H.
- b) If $\{b_1, b_2, \ldots, b_n\}$ and $\{c_1, c_2, \ldots, c_k\}$ are two bases for a vector space V then what is the relation between n and k? n=k
- c) True or false: Every vector space has a basis.

False. For example C[0, 1] has no basis since it is infinite dimensional. This would be true if you allowed infinite bases, but in this undergraduate course we don't.

- d) If A is an $m \times n$ matrix, then $rank(A) + \dim Nul(A) =$ _____. n
- e) If $\{v_1, v_2, v_3, v_4\}$ is a linearly independent set in a finite dimensional vector space V then the dimension of V is = 4, > 4, < 4, ≥ 4 , ≤ 4 , or none of the above? ≥ 4