Math 461 Mini Test \# 2, section 0601

Instructions: Do three of the following four problems. Choose one of the three to be worth ten points instead of 20 .

Name: \qquad

20 point problems: \qquad and \qquad

10 point problem: \qquad

1. (20) Consider the following matlab output.
```
>> A = [3 6 1 1;1 2 3 -5; 2 4 0 2]
A =
\begin{tabular}{llrr}
3 & 6 & 1 & 1 \\
1 & 2 & 3 & -5 \\
2 & 4 & 0 & 2 \\
> \(\operatorname{rref}(\mathrm{A})\) & & & \\
ans \(=\)
\end{tabular}
\begin{tabular}{rrrr}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{tabular}
```

a) What is the rank of A ?

The rank is 2 since there are two pivots.
b) Find bases for the column space of A, the row space of A, and the null space of A and determine the dimensions of these vector spaces.
A basis for the row space is $\left.\left\{\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]\right]^{T},\left[\begin{array}{llll}0 & 0 & 1 & -2\end{array}\right]^{T}\right\}$. A basis for the column space is the pivot columns $\left\{\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]^{T},\left[\begin{array}{lll}1 & 3 & 0\end{array}\right]^{T}\right\}$. From the rref, a basis for the null space is $\left\{\left[\begin{array}{llll}-2 & 1 & 0 & 0\end{array}\right]^{T},\left[\begin{array}{llll}-1 & 0 & 2 & 1\end{array}\right]^{T}\right\}$. All have dimension two.
2. (20) Let H be the set of 2×2 symmetric matrices. (A matrix A is symmetric if $A=A^{T}$. So for example $I_{2},\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, and $\left[\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right]$ are all symmetric. A 2×2 matrix is symmetric if and only if its two off-diagonal entries are equal.)
a) Show that H is a subspace of $M_{2 \times 2}$.

The zero matrix is symmetric. If A and B are symmetric, then $(A+B)^{T}=A^{T}+B^{T}=$ $A+B$ so $A+B$ is symmetric. If A is symmetric and c is a scalar then $(c A)^{T}=c A^{T}=c A$ so $c A$ is symmetric. So the symmetric matrices form a subspace.
b) Find a basis for H.

Symmetric matrices have the form $\left[\begin{array}{ll}a & c \\ c & b\end{array}\right]$ so one example of a basis is given by $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$. Those three matrices are clearly linearly independent and span the symmetric matrices.
c) What is the dimension of H ?

The dimension is three since a basis has three elements.
3. (20) Let $\mathcal{B}=\left\{1, t-1, t^{2}-2 t+1\right\}$ and $\mathcal{C}=\left\{t, 1, t^{2}\right\}$ be two bases for P_{2}. Find the coordinates $\left[t^{2}+3 t-4\right]_{\mathcal{B}}$ and $\left[t^{2}+3 t-4\right]_{\mathcal{C}}$. In other words, find the \mathcal{B}-coordinate vector for $t^{2}+3 t-4$ and find the \mathcal{C}-coordinate vector for $t^{2}+3 t-4$.

By inspection, $\left[t^{2}+3 t-4\right]_{\mathcal{C}}=[3-41]^{T}$. We could find

$$
\left[t^{2}+3 t-4\right]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right]=P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -2 \\
1 & -1 & 1 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right]
$$

which could be solved by row reducing $\left[\begin{array}{cccc}0 & 1 & -2 & 3 \\ 1 & -1 & 1 & -4 \\ 0 & 0 & 1 & 1\end{array}\right]$. You could also see by inspection that $t^{2}=\left(t^{2}-2 t+1\right)+2(t-1)+1$ and $t=(t-1)+1$ so
$t^{2}+3 t-4=\left(t^{2}-2 t+1\right)+2(t-1)+1+3(t-1)+3 \cdot 1-4 \cdot 1=\left(t^{2}-2 t+1\right)+5(t-1)+0 \cdot 1$
So $\left[t^{2}+3 t-4\right]_{\mathcal{B}}=\left[\begin{array}{lll}0 & 5 & 1\end{array}\right]^{T}$.
4. (20) Short answer:
a) $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis for a subspace H of V if \qquad .
it is linearly independent and spans H.
b) If $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ are two bases for a vector space V then what is the relation between n and k ?
$n=k$
c) True or false: Every vector space has a basis.

False. For example $C[0,1]$ has no basis since it is infinite dimensional. This would be true if you allowed infinite bases, but in this undergraduate course we don't.
d) If A is an $m \times n$ matrix, then $\operatorname{rank}(A)+\operatorname{dim} N u l(A)=$ \qquad .
n
e) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a linearly independent set in a finite dimensional vector space V then the dimension of V is $=4,>4,<4, \geq 4, \leq 4$, or none of the above?
≥ 4

