Math 461 Test # 3, 0501

1. (25) For each of the following matrices:

- + Find its eigenvalues and an eigenvector for each eigenvalue.
- + If possible, find a (possibly complex) matrix P and a diagonal matrix D so that the given matrix equals PDP^{-1} .
- + If possible, find a real matrix Q so that the given matrix is QCQ^{-1} where C is of the form $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

a)
$$\begin{bmatrix} 4 & 4 \\ -2 & -2 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} -6 & -15 \\ 3 & 6 \end{bmatrix}$

Answer: The characteristic polynomial of a) is $(4 - \lambda)(-2 - \lambda) - 4(-2) = \lambda^2 - 2\lambda$ so the eigenvalues are 0 and 2. For $\lambda = 2$ the eigenvectors are nonzero vectors in the null space of $\begin{bmatrix} 2 & 4 \\ -2 & -4 \end{bmatrix}$ so an eigenvector is $(2, -1)^T$. For $\lambda = 0$ the eigenvectors are nonzero vectors in the null space of $\begin{bmatrix} 4 & 4 \\ -2 & -2 \end{bmatrix}$ so an eigenvector is $(1, -1)^T$. So the matrix is diagonalizable and equals PDP^{-1} where $P = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. It cannot be QCQ^{-1} since its eigenvalues would then be the eigenvalues of C which are $a \pm b\sqrt{-1}$. The characteristic polynomial of b) is $(1 - \lambda)(1 - \lambda) - 2(0) = (\lambda - 1)^2$ so the only eigenvalue is 1. The eigenvectors are nonzero vectors in the null space of $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ so an eigenvector is $(1,0)^T$. It is not diagonalizable since the eigenvalue 1 has multiplicity 2 but its eigenspace is only one dimensional. It is not QCQ^{-1} since the eigenvalues of C are $a \pm b\sqrt{-1}$ which would mean a = 1 and b = 0 so C would be diagonal, but the matrix is not diagonalizable. The characteristic polynomial of c is $(-6 - \lambda)(6 - \lambda) - 3(-15) = \lambda^2 + 9$ so the eigenvalues are $\pm 3\sqrt{-1}$. For $\lambda = -3\sqrt{-1}$ an eigenvector is $(6 - 3\sqrt{-1}, -3)^T$ or more simply $(-2 + \sqrt{-1}, 1)^T$. For $\lambda = -3\sqrt{-1}$ an eigenvector is the complex conjugate, $(-2 - \sqrt{-1}, 1)^T$. So the matrix is PDP^{-1} where $Q = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$ has columns which are the real and imaginary parts of the eigenvectors.

2. (20) A 5 × 5 matrix A has three eigenvalues 1, 3, and 6. The eigenspace of A corresponding to $\lambda = 1$ is three dimensional.

a) What is the characteristic polynomial of A?

Answer: We know that $\lambda = 1$ has multiplicity ≥ 3 . So since it has degree 5 the only possibility is $-(\lambda - 1)^3(\lambda - 3)(\lambda - 6)$. (The minus sign comes because the coefficient

of λ^n in Lay's version of the characteristic polynomial is $(-1)^n$ for an $n \times n$ matrix. I did not take off points if you got the sign wrong.)

- b) Must A be diagonalizable? Why or why not?
 Answer: Since the eigenspace dimensions all equal the multiplicities we know A must be diagonalizable.
- c) Must A be invertible? Why or why not? Answer: Since 0 is not an eigenvalue, the null space of A is trivial, so A is invertible.
- d) Find the ranks of the matrices $A, A I_5$ and $A 3I_5$.

Answer: Since A is invertible, $\operatorname{rank}(A) = 5$. The eigenspace for $\lambda = 1$ is the null space of $A-I_5$ so $\operatorname{rank}(A-I_5) = 5 - \dim(Null(A-I_5)) = 2$. Likewise, $\operatorname{rank}(A-3I_5) = 5 - \dim(Null(A-3I_5)) = 4$ since the eigenspace for $\lambda = 3$ has dimension at most the multiplicity 1.

- 3. (15) Suppose A is a 3×3 matrix so that $A \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$, and so
- that $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ is in the null space of A.
 - a) What are the eigenvalues of A?

Answer: Since
$$A\begin{bmatrix}1\\1\\0\end{bmatrix} = \begin{bmatrix}2\\2\\0\end{bmatrix}$$
 we know 2 is an eigenvalue, since $A\begin{bmatrix}1\\0\\1\end{bmatrix} = \begin{bmatrix}-1\\0\\-1\end{bmatrix}$

we know -1 is an eigenvalue, and since $A\begin{bmatrix} 0\\1\\0\end{bmatrix} = \begin{bmatrix} 0\\0\\0\end{bmatrix}$ we know 0 is an eigenvalue.

Since A is 3×3 it has at most 3 eigenvalues so the eigenvalues are 2, -1, and 0.

b) Determine A. (You may leave your answer as a product of matrices and their inverses.)

Answer: We know from part a) that $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

c) Determine A^k for any integer k > 0. (You may leave your answer as a product of matrices and their inverses.)

Answer: We know $A^k = PD^kP^{-1}$ where P and D are as in part b), so

$$A^{k} = P \begin{bmatrix} 2^{k} & 0 & 0\\ 0 & (-1)^{k} & 0\\ 0 & 0 & 0 \end{bmatrix} P^{-1}$$

4. (10) Let $T : \mathbb{P}_2 \to \mathbb{P}_2$ be the linear transformation which takes a polynomial p(t) to tp'(t). Find the matrix $[T]_{\mathcal{B}}$ of T with respect to the basis $\mathcal{B} = \{1, t, t^2\}$.

Answer: $T(1) = t \cdot 1' = 0, \ T(t) = t \cdot t' = t, \ \text{and} \ T(t^2) = t \cdot (t^2)' = 2t^2.$ So $[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$

- 5. (15) Suppose $B = P^{-1}AP$. a) Then by definition, A is _____ to B. Answer: similar
 - b) Show that if \mathbf{x} is an eigenvector of A with eigenvalue λ , then $P^{-1}\mathbf{x}$ is an eigenvector of B with eigenvalue λ .

Answer: We are given that $x \neq 0$ and $Ax = \lambda x$. If $P^{-1}x = 0$ then $x = PP^{-1}x = P(0) = 0$, a contradiction, so $P^{-1}x \neq 0$. Now $BP^{-1}x = P^{-1}APP^{-1}x = P^{-1}Ax = P^{-1}(\lambda x) = \lambda P^{-1}x$, so $P^{-1}x$ is an eigenvector of B with eigenvalue λ .

c) Show that $\det A = \det B$. Answer:

$$\det(B) = \det(P^{-1}AP) = \det(P)\det(A)\det(P^{-1}) = \det(P)\det(A)(1/\det(P)) = \det(A)$$

6. (15) Same as a problem on Test 2.