Math 461 Test \# 3, 0601

1. (25) For each of the following matrices:

+ Find its eigenvalues and an eigenvector for each eigenvalue.
+ If possible, find a (possibly complex) matrix P and a diagonal matrix D so that the given matrix equals $P D P^{-1}$.
+ If possible, find a real matrix Q so that the given matrix is $Q C Q^{-1}$ where C is of the form $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
а) $\left[\begin{array}{cc}5 & 8 \\ -2 & -3\end{array}\right]$
b) $\left[\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right]$
c) $\left[\begin{array}{cc}-6 & -10 \\ 4 & 6\end{array}\right]$

Answer: The characteristic polynomial of a) is $(5-\lambda)(-3-\lambda)-8(-2)=(\lambda-1)^{2}$ so the only eigenvalue is 1 . The eigenvectors are nonzero vectors in the null space of $\left[\begin{array}{cc}4 & 8 \\ -2 & -4\end{array}\right]$ so an eigenvector is $(2,-1)^{T}$. It is not diagonalizable since the eigenvalue 1 has multiplicity 2 but its eigenspace is only one dimensional. It is not $Q C Q^{-1}$ since its eigenvalues would then be the eigenvalues of C which are $a \pm b \sqrt{-1}$. This would mean $a=1$ and $b=0$ so C would be diagonal, but the matrix is not diagonalizable. The characteristic polynomial of b) is $(1-\lambda)(-1-\lambda)-4(0)=(\lambda-1)(\lambda+1)$ so the eigenvalues are 1 and -1. For $\lambda=1$ the eigenvectors are nonzero vectors in the null space of $\left[\begin{array}{cc}0 & 4 \\ 0 & -2\end{array}\right]$ so an eigenvector is $(1,0)^{T}$. For $\lambda=-1$ the eigenvectors are nonzero vectors in the null space of $\left[\begin{array}{ll}2 & 4 \\ 0 & 0\end{array}\right]$ so an eigenvector is $(2,-1)^{T}$. So the matrix is diagonalizable and equals $P D P^{-1}$ where $P=\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]$ and $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. It cannot be $Q C Q^{-1}$ since the eigenvalues of C are $a \pm b \sqrt{-1}$. The characteristic polynomial of $c)$ is $(-6-\lambda)(6-\lambda)-4(-10)=\lambda^{2}+4$ so the eigenvalues are $\pm 2 \sqrt{-1}$. For $\lambda=2 \sqrt{-1}$ the eigenvectors are nonzero vectors in the null space of $\left[\begin{array}{cc}-6-2 \sqrt{-1} & -10 \\ 4 & 6-2 \sqrt{-1}\end{array}\right]$ so an eigenvector is $(6-2 \sqrt{-1},-4)^{T}$ or more simply $(3-\sqrt{-1},-2)^{T}$. For $\lambda=-2 \sqrt{-1}$ an eigenvector is the complex conjugate, $(3+\sqrt{-1},-2)^{T}$. So the matrix is $P D P^{-1}$ with $P=\left[\begin{array}{cc}3-\sqrt{-1} & 3+\sqrt{-1} \\ -2 & -2\end{array}\right]$ and $D=\left[\begin{array}{cc}2 \sqrt{-1} & 0 \\ 0 & -2 \sqrt{-1}\end{array}\right]$. It is also $Q C Q^{-1}$ where $Q=\left[\begin{array}{cc}3 & 1 \\ -2 & 0\end{array}\right]$ has columns which are the real and imaginary parts of the eigenvectors.
2. (20) A 5×5 matrix A has three eigenvalues 0 , 1 , and 3 . The eigenspaces of A corresponding to $\lambda=1$ and $\lambda=3$ are both two dimensional.
a) What is the characteristic polynomial of A ?

Answer: We know that $\lambda=1$ and 3 have multiplicity ≥ 2. So since it has degree 5 the only possibility is $-(\lambda-1)^{2}(\lambda-3)^{2} \lambda$. (The minus sign comes because the coefficient
of λ^{n} in Lay's version of the characteristic polynomial is $(-1)^{n}$ for an $n \times n$ matrix. I did not take off points if you got the sign wrong.)
b) Must A be diagonalizable? Why or why not?

Answer: Since the eigenspace dimensions all equal the multipicities we know A must be diagonalizable.
c) Must A be invertible? Why or why not?

Answer: Since 0 is an eigenvalue, the null space of A is nontrivial, so A is not invertible.
d) Find the ranks of the matrices $A, A-I_{5}$ and $A-3 I_{5}$.

Answer: The eigenspace for $\lambda=0$ is the null space of A so $\operatorname{rank}(A)=5-$ $\operatorname{dim}(\operatorname{Null}(A))=4$ since the eigenspace for $\lambda=0$ has dimension at most the multiplicity 1. The eigenspace for $\lambda=1$ is the null space of $A-I_{5}$ so $\operatorname{rank}\left(A-I_{5}\right)=$ $5-\operatorname{dim}\left(N u l l\left(A-I_{5}\right)\right)=3$. Likewise, $\operatorname{rank}\left(A-3 I_{5}\right)=5-\operatorname{dim}\left(N u l l\left(A-3 I_{5}\right)\right)=3$.
3. (15) Suppose A is a 3×3 matrix so that $A\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], A\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right]$, and so that $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is in the null space of A.
a) What are the eigenvalues of A ?

Answer: Since $A\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ we know 1 is an eigenvalue, since $A\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right]$ we know -1 is an eigenvalue, and since $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ we know 0 is an eigenvalue.
Since A is 3×3 it has at most 3 eigenvalues so the eigenvalues are $1,-1$, and 0 .
b) Determine A. (You may leave your answer as a product of matrices and their inverses.)

Answer: We know from part a) that $A=P D P^{-1}$ where $P=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ and
$D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$
c) Show that $A=A^{53}$.

Answer: We know $A^{53}=P D^{53} P^{-1}$ where P and D are as in part b), so

$$
A^{53}=P\left[\begin{array}{ccc}
1^{53} & 0 & 0 \\
0 & (-1)^{53} & 0 \\
0 & 0 & 0^{53}
\end{array}\right] P^{-1}=P\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] P^{-1}=A
$$

4. (10) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ be the linear transformation which takes a polynomial $p(t)$ to $t p^{\prime}(t)$. Find the matrix $[T]_{\mathcal{B}}$ of T with respect to the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$.

Answer: $\quad T(1)=t \cdot 1^{\prime}=0, T(t)=t \cdot t^{\prime}=t$, and $T\left(t^{2}\right)=t \cdot\left(t^{2}\right)^{\prime}=2 t^{2}$. So $[T]_{\mathcal{B}}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
5. (15) Suppose $B=P^{-1} A P$.
a) Then by definition, A is \qquad to B.
Answer: similar
b) Show that if \mathbf{x} is an eigenvector of A with eigenvalue λ, then $P^{-1} \mathbf{x}$ is an eigenvector of B with eigenvalue λ.
Answer: We are given that $x \neq 0$ and $A x=\lambda x$. If $P^{-1} x=0$ then $x=P P^{-1} x=$ $P(0)=0$, a contradiction, so $P^{-1} x \neq 0$. Now $B P^{-1} x=P^{-1} A P P^{-1} x=P^{-1} A x=$ $P^{-1}(\lambda x)=\lambda P^{-1} x$, so $P^{-1} x$ is an eigenvector of B with eigenvalue λ.
c) Show that $\operatorname{det} A=\operatorname{det} B$.

Answer:

$$
\operatorname{det}(B)=\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(P) \operatorname{det}(A) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(A)(1 / \operatorname{det}(P))=\operatorname{det}(A)
$$

6. (15) Same as a problem on Test 2.
