Math 461 Minitest \# 4, 0501

1. (10) Suppose $A=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / 2 \\ 0 & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / 2\end{array}\right]\left[\begin{array}{ll}4 & 1 \\ 0 & 1\end{array}\right]$ is the QR decomposition of A.
a) Find an orthonormal basis of the column space of A.

Answer: Get this from the columns of Q. So a basis is $\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}1 / 2 \\ 1 / \sqrt{2} \\ -1 / 2\end{array}\right]\right\}$. Note, the matrix Q is not a basis, it is a matrix, not a basis.
b) Find the closest point to $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ in the column space of A.

Answer: This is the projection to the column space. We have an orthonormal basis $\left\{u_{1}, u_{2}\right\}$ of the column space of A so the projection of e_{1} is

$$
\left\langle u_{1}, e_{1}\right\rangle u_{1}+\left\langle u_{2}, e_{1}\right\rangle u_{2}=1 / \sqrt{2} u_{1}+1 / 2 u_{2}=\left[\begin{array}{c}
1 / 2 \\
0 \\
1 / 2
\end{array}\right]+\left[\begin{array}{c}
1 / 4 \\
1 /(2 \sqrt{2}) \\
-1 / 4
\end{array}\right]=\left[\begin{array}{c}
3 / 4 \\
1 /(2 \sqrt{2}) \\
1 / 4
\end{array}\right]
$$

c) Find the least squares solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Answer: \quad This is the solution to $R \hat{\mathbf{x}}=Q^{T} e_{1}$ so $\left[\begin{array}{ll}4 & 1 \\ 0 & 1\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / 2\end{array}\right]$ so $x_{2}=1 / 2$, $4 x_{1}+x_{2}=1 / \sqrt{2}$ and $x_{1}=(1 / \sqrt{2}-1 / 2) / 4=(\sqrt{2}-1) / 8$. So the least squares solution is $\hat{\mathbf{x}}=\left[\begin{array}{c}(\sqrt{2}-1) / 8 \\ 1 / 2\end{array}\right]$.
2. (10) Let $Q(\mathbf{x})=-3 x_{2}^{2}+3 x_{3}^{2}+12 x_{1} x_{2}+12 x_{1} x_{3}$.
a) Find a symmetric A so that $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$.

Answer: $\left[\begin{array}{ccc}0 & 6 & 6 \\ 6 & -3 & 0 \\ 6 & 0 & 3\end{array}\right]$
b) A has eigenvectors $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ -2 \\ 2\end{array}\right]$ for eigenvalues $9,-9$, and 0 . Find, if possible, an orthogonal matrix P so that the change of variables $\mathbf{x}=P \mathbf{y}$ transforms Q to a quadratic form with no cross-product terms. If this is not possible, say why not.
Answer: The columns of P are unit eigenvectors, so it is only necessary to divide the given eigenvectors by their length which is 3 in each case. So $P=\left[\begin{array}{ccc}2 / 3 & 2 / 3 & -1 / 3 \\ 1 / 3 & -2 / 3 & -2 / 3 \\ 2 / 3 & -1 / 3 & 2 / 3\end{array}\right]$
3. (10) Find an orthogonal basis for $\operatorname{Span}\left\{1, t^{2}\right\}$ in $C[-2,2]$ with inner product $\langle f, g\rangle=$ $\int_{-2}^{2} f(t) g(t) d t$.

Answer: By the Gram-Schmidt process we must compute $t^{2}-\frac{\left\langle 1, t^{2}\right\rangle}{\langle 1,1\rangle} 1$. We have $\left.\left\langle 1, t^{2}\right\rangle=\int_{-2}^{2} t^{2} d t=t^{3} / 3\right]_{-2}^{2}=16 / 3$ and $\left.\langle 1,1\rangle=\int_{-2}^{2} 1 d t=t\right]_{-2}^{2}=4$. So $t^{2}-\frac{\left\langle 1, t^{2}\right\rangle}{\langle 1,1\rangle} 1=$ $t^{2}-4 / 3$ and an orthogonal basis is $\left\{1, t^{2}-4 / 3\right\}$.
4. (10) Let $A=\left[\begin{array}{cc}.6 & .8 \\ -.8 & .6\end{array}\right]\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}1 / \sqrt{2} & 1 / 2 & -1 / 2 \\ 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / 2 & 1 / 2\end{array}\right]^{T}$ be the SVD decomposition of A.
a) Find a unit vector \mathbf{v} so that $\|A \mathbf{v}\|$ is as large as possible.

Answer: If $A=U \Sigma V^{T}$ this is the first column of V so $\mathbf{v}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right]$.
b) What are the eigenvalues of $A^{T} A$?

Answer: They are the squares of the singular values and possibly 0 , if the rank of A is less than the number of columns of A. A has rank 2 since there are two singular values, and A has three columns so 0 is an eigenvalue of A. So the eigenvalues of $A^{T} A$ are 16, 1 , and 0 . You could also see this directly since $V^{-1} A^{T} A V=V^{T} A^{T} A V=\Sigma^{T} \Sigma$ which is diagonal with entries 16, 1, and 0 . (Recall similar matrices have the same eigenvalues).
c) What are the singular values of A ?

Answer: $\sigma_{1}=4$ and $\sigma_{2}=1$.
Do either problem 5 or 6 . Problem 6 has a 5 point bonus. Clearly indicate which problem you want graded.
5. (10) Let $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ be an orthonormal set in \mathbb{R}^{4}.
a) Is $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ a linearly independent set?

Answer: Yes, any orthonormal set is linearly independent.
b) Find the dot product of $2 \mathbf{u}_{1}+3 \mathbf{u}_{2}$ with $\mathbf{u}_{2}-\mathbf{u}_{3}$.

Answer:
$\left(2 \mathbf{u}_{1}+3 \mathbf{u}_{2}\right) \cdot\left(\mathbf{u}_{2}-\mathbf{u}_{3}\right)=2 \mathbf{u}_{1} \cdot \mathbf{u}_{\mathbf{2}}+3 \mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{2}}-2 \mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{3}-3 \mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{3}}=0+3-0-0=3$
6. (15) Let $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ be an orthonormal set in \mathbb{C}^{4} with the usual Hermitian inner product $\langle\mathbf{u}, \mathbf{v}\rangle=u^{*} v$.
a) Is $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ a linearly independent set?

Answer: Yes, any orthonormal set is linearly independent.
b) Find the inner product $\left\langle(2+i) \mathbf{u}_{\mathbf{1}}+(3-i) \mathbf{u}_{\mathbf{2}}+\mathbf{u}_{\mathbf{3}}, 2 i \mathbf{u}_{\mathbf{2}}-(1+i) \mathbf{u}_{\mathbf{3}}\right\rangle$.

Answer:

$$
\begin{gathered}
\left\langle(2+i) \mathbf{u}_{\mathbf{1}}+(3-i) \mathbf{u}_{\mathbf{2}}+\mathbf{u}_{\mathbf{3}}, 2 i \mathbf{u}_{\mathbf{2}}-(1+i) \mathbf{u}_{\mathbf{3}}\right\rangle \\
=(2-i)\left\langle\mathbf{u}_{\mathbf{1}}, 2 i \mathbf{u}_{\mathbf{2}}-(1+i) \mathbf{u}_{\mathbf{3}}\right\rangle+(3+i)\left\langle\mathbf{u}_{\mathbf{2}}, 2 i \mathbf{u}_{\mathbf{2}}-(1+i) \mathbf{u}_{\mathbf{3}}\right\rangle+\left\langle\mathbf{u}_{\mathbf{3}}, 2 i \mathbf{u}_{\mathbf{2}}-(1+i) \mathbf{u}_{\mathbf{3}}\right\rangle \\
=(2-i)(0+0)+(3+i)(2 i-0)-(1+i)=6 i-2-1-i=-3+5 i
\end{gathered}
$$

