Math 461 Test \# 2

1. (25) For each set H below determine whether or not it is a subspace. If it is not a subspace, show why it is not. If it is a subspace and is finite dimensional, write down a basis for H and determine the dimension of H.
a) H is the set of upper triangular matrices in $\mathbb{M}_{3 \times 3}$.
b) $H=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ where v_{i} are nonzero vectors in a vector space $V, v_{1}=2 v_{2}-5 v_{3}$, and v_{2} is not a scalar multiple of v_{3}.
c) H is the set of polynomials p in \mathbb{P}_{3} so that $p(0)=1$.
d) $H=\left\{\left[\begin{array}{c}2 s+3 t \\ s-2 t \\ 5 t\end{array}\right]: s, t\right.$ in $\left.\mathbb{R}\right\}$.
2. (15) Let $\mathcal{B}=\left\{\left[\begin{array}{ll}1 & 2\end{array}\right]^{T},\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{ll}0 & 1\end{array}\right]^{T},\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}\right\}$ be two bases of \mathbb{R}^{2}. Find the coordinate change matrix $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} coordinates.
3. (15) Solve the equation $\left[\begin{array}{cc}I_{5} & X \\ 0 & I_{5}\end{array}\right]\left[\begin{array}{c}A \\ Y\end{array}\right]=\left[\begin{array}{l}B \\ C\end{array}\right]$ for X and Y in terms of A, B, and C. Assume that A, B, and C are invertible 5×5 matrices.
4. (10) Determine whether or not $\left\{2 t^{2},(t-2)^{2}, t-1\right\}$ is a basis for \mathbb{P}_{2}. If it is a basis, find the coordinate vector of $p(t)=t+1$ relative to this basis.
5. (30) Indicate whether each statement is true or false.
a) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
b) If A is invertible, then $\operatorname{rank}(A)=\operatorname{rank}\left(A^{-1}\right)$.
c) Any four vectors which span a four dimensional vector space V form a basis for V.
d) If v_{1}, v_{2}, v_{3} are linearly independent vectors in a four dimensional vector space V, then there is a vector v_{4} so that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for V.
e) Every vector space has a basis.
f) The vector spaces $\mathbb{M}_{2 \times 3}$ and \mathbb{P}_{5} are isomorphic.
g) $\operatorname{det}(2 A)=2 \operatorname{det}(A)$.
h) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
i) If $T: V \rightarrow W$ is a linear transformation, then the kernel of T is a subspace of V.
j) If $T: V \rightarrow W$ is a linear transformation, then the kernel of T is a subspace of W.
6. (10) Short answer.
a) If A is an $m \times n$ matrix, then $\operatorname{rank}(A)+\operatorname{dim} \operatorname{Nul}(A)=$
b) If B is obtained from A by switching two rows of A, then $\operatorname{det}(B)=$
7. (20) Let $T: V \rightarrow W$ be a linear transformation. Given a subspace U of V, let $T(U)$ denote the set of all images of the form $T(x)$, where x is in U. Show that $T(U)$ is a subspace of W.
