Matlab in Math 461, part seven

Least squares solutions

You can find the least squares solution to $A x=b$ using the methods in Lay, solving the normal equation $A^{T} A x=A^{T} b$. But matlab also finds a least squares solution for you automatically. If A is not a square matrix then $\mathrm{A} \backslash \mathrm{b}$ always finds a least squares solution to $A x=b$. Matlab may complain if the columns of A are not linearly independent, but generally seems to come up with a good answer nevertheless. However, some care must be taken if A is square and not invertible since then $\mathrm{A} \backslash \mathrm{b}$ will not determine the least squares solution. You can get around this by adding a last row of zeroes to A and b to fool matlab. For example if A is 6×6 you could do $\mathrm{x}=[\mathrm{A} ; \operatorname{zeros}(1,6)] \backslash[\mathrm{b} ; 0]$. Then x will be a least squares solution to $A x=b$.

Singular value decomposition

The command [U S V] $=\operatorname{svd}(\mathrm{A})$ finds the singular value decomposition of A. So if A is $m \times n$ then U and V are unitary matrices (which means orthogonal in case A is real), $A=U S V^{*}$, and S is a diagonal $m \times n$ matrix (that is, if A has rank r then S has an $r \times r$ diagonal matrix in its upper left corner and the rest of S is zero). The diagonal entries of S are real and nonnegative, in decreasing order.

Problems due May 10

For all the following problems let A be a random 4×4 complex matrix with rank 2 and nonzero imaginary part. Check that its rank is in fact 2 before proceeding.
Problem 1: Generate a random vector b in \mathbb{C}^{4}. Find a least squares solution \hat{x} to $A x=b$. You could use the trick given above if you wanted or any other way you prefer. Compute the error vector $b-A \hat{x}$. Check that this error vector is perpendicular to the column space of A. The error is the length $\|b-A \hat{x}\|$. Check that the error is minimized for the least squares solution by computing the quantity $\|b-A x\|$ for several random vectors x and seeing that it is larger than than the error.
Problem 2: Find the singular value decomposition of A. Also compute orth (A) and null (A). Based on your results, guess how matlab computes orth (A) and null(A).
Problem 3: Find the pseudoinverse A^{+}of A (see page 480). Calculate $A^{+} b$ (using the same b as in problem 1). Exercise 13 on page 492 says that $A^{+} b$ should be the least squares solution to $A x=b$ of smallest length. Check that $A^{+} b$ is a least squares solution by seeing whether its image is the same as $A(\hat{x})$. Compare the length of $A^{+} b$ with the length of your solution \hat{x} from problem 1. Determine whether or not the length is smaller.

