MATH 461	EXAM $\#1$	Problem 1	March 2, 2005
-----------------	------------	-----------	---------------

Name: TA: Section:

1. (39) Suppose a matrix A has an echelon form $\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and B has an echelon form $\begin{bmatrix} 2 & 2 & 3 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$. Answer the following questions. If there is not enough infromation

to give an answer, say so.

a) How many pivots does A have?

Answer: 3

b) How many pivots does B have?

Answer: 4

c) How many solutions does Ax = 0 have?

Answer: It has infinitely many solutions since there is a free variable

d) How many solutions does Bx = 0 have?

Answer: one, since there is no free variable

e) How many solutions does $Ax = \begin{bmatrix} 1 & 2 & 3 & 0 \end{bmatrix}^T$ have?

Answer: You can't tell. There are either infinitely many or no solutions depending on whether $[1 \ 2 \ 3 \ 0]^T$ is in the span of the columns of A or not. But since we don't know A we can't tell.

f) How many solutions does $Bx = \begin{bmatrix} 1 & 2 & 3 & 0 \end{bmatrix}^T$ have?

Answer: one, since the columns of B span \mathbb{R}^4 and there are no free variables.

g) Is the linear transformation $x \mapsto Ax$ one to one?

Answer: no, since there is a free variable

h) Is the linear transformation $x \mapsto Bx$ one to one?

Answer: yes

i) Is the linear transformation $x \mapsto Ax$ onto?

Answer: no, it does not map onto \mathbb{R}^4 because there is not a pivot in every row.

j) Is the linear transformation $x \mapsto Bx$ onto?

Answer: yes

k) Which of A or B is invertible?

Answer: B

1) One solution of $Ax = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$ is $x = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}^T$. Find all solutions.

Answer: We can find the solutions of Ax = 0 from its echelon form, it is the span of $[-3 - 2 \ 1 \ 0]^T$. So all solutions of $Ax = [1 \ 2 \ 3 \ 4]^T$ are $x = [0 \ 1 \ 0 \ 1]^T + x_3[-3 \ -2 \ 1 \ 0]^T$.

m) One solution of $Bx = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$ is $x = \begin{bmatrix} 0 & 1 & 2 & -1 \end{bmatrix}^T$. Find all solutions.

Answer: There is only one solution, (since $x \mapsto Bx$ is one to one) so $x = \begin{bmatrix} 0 & 1 & 2 & -1 \end{bmatrix}^T$ is the only solution.

2. (36)

a) Suppose A, B, and C are invertible 4×4 matrices. Solve for the 4×4 matrices W, X, Y and Z.

$$\begin{bmatrix} X & Y \\ Z & W \end{bmatrix} \begin{bmatrix} 0 & A \\ B & C \end{bmatrix} = I_8$$

Answer: We can write $I_8 = \begin{bmatrix} I_4 & 0 \\ 0 & I_4 \end{bmatrix}$ so multiplying out the left hand side we get:

$$\begin{bmatrix} YB & XA + YC \\ WB & ZA + WC \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

Since WB = 0 we get $W = 0B^{-1} = 0$. Since YB = I we get $Y = B^{-1}$. Also ZA + WC = Iso ZA = I - WC = I, so $Z = A^{-1}$. Finally, XA + YC = 0 so $XA = -YC = -B^{-1}C$, which means $X = -B^{-1}CA^{-1}$. (We did not need to require C to be invertible to get this.)

b) Find $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}^{-1}$, with A, B, and C invertible.

Answer: The calculation above works for any sized A, B, and C so

$$\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}^{-1} = \begin{bmatrix} -B^{-1}CA^{-1} & B^{-1} \\ A^{-1} & 0 \end{bmatrix}$$

c) Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation and also $T\begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ and

$$T\begin{pmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \text{ and } T\begin{pmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 2\\2\\4 \end{bmatrix}. \text{ Find } T\begin{pmatrix} 2\\-1 \end{bmatrix}. \text{ Also find the standard matrix of } T.$$

Answer:

$$T\begin{pmatrix} 2\\ -1 \end{bmatrix} = T(2e_1 - e_2) = 2T(e_1) - T(e_2) = 2\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} - \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ 4\\ 5 \end{bmatrix}$$

The standard matrix is $\begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 3 & 1 \end{bmatrix}$.

3. (25) Let $\mathbf{v_1} = [1 \ 2 \ 3 \ 1]^T$, $\mathbf{v_2} = [1 \ 0 \ -1 \ 1]^T$, and $\mathbf{v_3} = [1 \ 8 \ h \ 1]^T$. a) Find all h so that $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly dependent.

Answer: We know that $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly dependent if and only if the matrix $[v_1 \ v_2 \ v_3]$ has less than three pivots. So we can row reduce $[v_1 \ v_2 \ v_3]$.

-1	1	1		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	1 -		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	$\begin{bmatrix} 1 \\ c \end{bmatrix}$
$\frac{2}{3}$	$0 \\ -1$	$\frac{8}{h}$	\sim	$\begin{vmatrix} 0\\0 \end{vmatrix}$	$-2 \\ -4$	b h-3	\sim	$\begin{vmatrix} 0\\0 \end{vmatrix}$	$-2 \\ 0$	$\begin{bmatrix} 0\\ h-15 \end{bmatrix}$
1	1	1		Lo	0	0 _		Lo	0	0

So the only h where $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly dependent is h = 15.

b) For each h you found in part a), determine if possible weights c_1 and c_2 so that $\mathbf{v_3} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2}$.

Answer: Setting h = 15 and reducing further we get:

- 1	1	1		Γ1	1	ך 1		Γ1	0	4 J	
0	-2	6		0	1	-3		0	1	-3	
0	0	0	\sim	0	0	0	\sim	0	0	0	
0	0	0		Lo	0	0		LO	0	0	

So a solution to $[v_1 \ v_2 \ v_3]x = 0$ is $x = [-4 \ 3 \ 1]^T$ which means that $-4v_1 + 3v_2 + v_3 = 0$. Consequently, $v_3 = 4v_1 - 3v_2$ so we must have $c_1 = 4$ and $c_2 = -3$. You could also solve this by solving $[v_1 \ v_2]c = v_3$ which has the augmented matrix $[v_1 \ v_2 \ v_3]$ so you can read directly from the above reduced echelon form that $c_1 = 4$ and $c_2 = -3$.

c) For each h you found in part a), determine whether or not $\mathbf{v_3}$ is in Span $\{\mathbf{v_1}, \mathbf{v_2}\}$. Answer: Since we saw in part b) that for h = 15, v_3 is a linear combination of v_1 and v_2

we know that v_3 is in Span $\{\mathbf{v_1}, \mathbf{v_2}\}$ when h = 15.