1. (39) Suppose a matrix A has an echelon form $\left[\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ and B has an echelon
form $\left[\begin{array}{llll}2 & 2 & 3 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 4\end{array}\right]$. Answer the following questions. If there is not enough infromation to give an answer, say so.
a) How many pivots does A have?

Answer: 3
b) How many pivots does B have?

Answer: 4
c) How many solutions does $A x=0$ have?

Answer: It has infinitely many solutions since there is a free variable
d) How many solutions does $B x=0$ have?

Answer: one, since there is no free variable
e) How many solutions does $A x=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]^{T}$ have?

Answer: You can't tell. There are either infinitely many or no solutions depending on whether $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ is in the span of the columns of A or not. But since we don't know A we can't tell.
f) How many solutions does $B x=\left[\begin{array}{llll}1 & 2 & 3 & 0\end{array}\right]^{T}$ have?

Answer: one, since the columns of B span \mathbb{R}^{4} and there are no free variables.
g) Is the linear transformation $x \mapsto A x$ one to one?

Answer: no, since there is a free variable
h) Is the linear transformation $x \mapsto B x$ one to one?

Answer: yes
i) Is the linear transformation $x \mapsto A x$ onto?

Answer: no, it does not map onto \mathbb{R}^{4} because there is not a pivot in every row.
j) Is the linear transformation $x \mapsto B x$ onto?

Answer: yes
k) Which of A or B is invertible?

Answer: B

1) One solution of $A x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ is $x=\left[\begin{array}{lll}0 & 1 & 0\end{array} 1\right]^{T}$. Find all solutions.

Answer: We can find the solutions of $A x=0$ from its echelon form, it is the span of $\left[\begin{array}{llll}-3 & -2 & 1 & 0\end{array}\right]^{T}$. So all solutions of $A x=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]^{T}$ are $x=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]^{T}+x_{3}\left[\begin{array}{llll}-3 & -2 & 1 & 0\end{array}\right]^{T}$.
m) One solution of $B x=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]^{T}$ is $x=\left[\begin{array}{llll}0 & 1 & 2 & -1\end{array}\right]^{T}$. Find all solutions.

Answer: There is only one solution, (since $x \mapsto B x$ is one to one) so $x=\left[\begin{array}{lll}0 & 1 & 2\end{array}-1\right]^{T}$ is the only solution.
2. (36)
a) Suppose A, B, and C are invertible 4×4 matrices. Solve for the 4×4 matrices W, X, Y and Z.

$$
\left[\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right]\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]=I_{8}
$$

Answer: We can write $I_{8}=\left[\begin{array}{cc}I_{4} & 0 \\ 0 & I_{4}\end{array}\right]$ so multiplying out the left hand side we get:

$$
\left[\begin{array}{cc}
Y B & X A+Y C \\
W B & Z A+W C
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]
$$

Since $W B=0$ we get $W=0 B^{-1}=0$. Since $Y B=I$ we get $Y=B^{-1}$. Also $Z A+W C=I$ so $Z A=I-W C=I$, so $Z=A^{-1}$. Finally, $X A+Y C=0$ so $X A=-Y C=-B^{-1} C$, which means $X=-B^{-1} C A^{-1}$. (We did not need to require C to be invertible to get this.)
b) Find $\left[\begin{array}{ll}0 & A \\ B & C\end{array}\right]^{-1}$, with A, B, and C invertible.

Answer: The calculation above works for any sized A, B, and C so

$$
\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-B^{-1} C A^{-1} & B^{-1} \\
A^{-1} & 0
\end{array}\right]
$$

c) Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation and also $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$. Find $T\left(\left[\begin{array}{c}2 \\ -1\end{array}\right]\right)$. Also find the standard matrix of T.

Answer:

$$
T\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)=T\left(2 e_{1}-e_{2}\right)=2 T\left(e_{1}\right)-T\left(e_{2}\right)=2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right]
$$

The standard matrix is $\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 3 & 1\end{array}\right]$.
3. (25) Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{llll}1 & 2 & 3 & 1\end{array}\right]^{T}, \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{llll}1 & 0 & -1 & 1\end{array}\right]^{T}$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{llll}1 & 8 & h & 1\end{array}\right]^{T}$.
a) Find all h so that $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly dependent.

Answer: We know that $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly dependent if and only if the matrix $\left[v_{1} v_{2} v_{3}\right]$ has less than three pivots. So we can row reduce $\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$.

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & 8 \\
3 & -1 & h \\
1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 6 \\
0 & -4 & h-3 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 6 \\
0 & 0 & h-15 \\
0 & 0 & 0
\end{array}\right]
$$

So the only h where $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly dependent is $h=15$.
b) For each h you found in part a), determine if possible weights c_{1} and c_{2} so that $\mathbf{v}_{\mathbf{3}}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}$.
Answer: Setting $h=15$ and reducing further we get:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So a solution to $\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right] x=0$ is $x=\left[\begin{array}{lll}-4 & 3 & 1\end{array}\right]^{T}$ which means that $-4 v_{1}+3 v_{2}+v_{3}=0$. Consequently, $v_{3}=4 v_{1}-3 v_{2}$ so we must have $c_{1}=4$ and $c_{2}=-3$. You could also solve this by solving $\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right] c=v_{3}$ which has the augmented matrix $\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$ so you can read directly from the above reduced echelon form that $c_{1}=4$ and $c_{2}=-3$.
c) For each h you found in part a), determine whether or not $\mathbf{v}_{\mathbf{3}}$ is in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.

Answer: Since we saw in part b) that for $h=15, v_{3}$ is a linear combination of v_{1} and v_{2} we know that v_{3} is in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ when $h=15$.

