MATH 461

Name:
TA:
EXAM \# 2 Problem $1 \quad$ March 30, 2005
EXAM \# 2 Problem $1 \quad$ March 30, 2005

For each of the following sets H, determine whether or not H is a subspace (and give adequate reasons for your answer). If it is a subspace, find a basis if possible and determine the dimension of H.
1a) $[8] H$ is the set of $[x y z]^{T}$ in \mathbb{R}^{3} so that $x+2 y+4 z^{2}=0$.

1b) [8] H is the set of diagonal 2×2 matrices in $\mathbb{M}_{2 \times 2}$.

1c) [8] H is the set of polynomials $p(t)$ in \mathbb{P} so that $\int_{1}^{2} p(t) d t=0$.

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Signature \qquad

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be the transformation $T(p)=p^{\prime}-p(0)$, so for example $T\left(t^{3}-t+2\right)=$ $3 t^{2}-1-2=3 t^{2}-3$.

2a) [8] Show that T is a linear transformation.

2b) [6] Find a basis for the kernel of T.

2c) [6] Find the dimension of the kernel of T and dimension of the range of T.

2d) [6] Is T one to one? \qquad Is T onto? \qquad Give reasons for your answers below.

MATH 461 EXAM \# 2 Problem $3 \quad$ March 30, 2005

Name:
TA:
Section:
Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 9 \\ 2 & 0 & -2 & 6 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 7\end{array}\right]$. You may use the following matlab output in this question:

EDU $>$ rref(A)
ans $=$
$\begin{array}{llll}1 & 0 & -1 & 0\end{array}$
$\begin{array}{llll}0 & 1 & 2 & 0\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$
3a) [6] What is the rank of A ? \qquad What is the rank of A^{T} ? \qquad
3b) [6] Find a basis of the column space of A.

3c) [6] Find a basis of the row space of A.

3d) [8] Find a basis of the null space of A.

3e) [4] What is the determinent of A ?

MATH 461 EXAM \# 2 Problem $4 \quad$ March 30, 2005

Name:
TA:
Section:
4a) [6] Is $\left\{\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right],\left[\begin{array}{ll}1 & 4 \\ 0 & 0\end{array}\right]\right\}$ a linearly independent set in the vector space $\mathbb{M}_{2 \times 2}$ of 2×2 matrices? You must give an adequate reason for your answer.

4b) [6] Is $\left\{1, \cos ^{2}(t), \sin ^{2}(t)\right\}$ a linearly independent set of functions defined on \mathbb{R} ? You must give an adequate reason for your answer.

4c) [8] Find a basis \mathcal{B} for the span of $\left\{t^{2}, t-1, t^{2}+2 t-2\right\}$ in \mathbb{P}_{2}. Find the coordinates of $t^{2}+5 t-5$ relative to your basis \mathcal{B}.

