MATH 461 EXAM \# 3 Problem $1 \quad$ April 29, 2005

Name:
TA:
Section:
Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right]$.
1a) [20] Find all least squares solutions to $A \mathbf{x}=\mathbf{b}$.

1b) [5] Find the orthogonal projection of \mathbf{b} to the column space of A.

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Signature \qquad

Consider the vector space $C[0,1]$ of continuous real valued functions on the interval $[0,1]$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Let H be the subspace spanned by the functions 1 and t. Let $T: H \rightarrow H$ be differentiation, $T(f)=d f / d t$.

2a) [10] Find an orthonormal basis \mathcal{B} for H.

2b) [10] Find the matrix of T relative to the basis \mathcal{B} you found in part a).

2c) [5] Find the orthogonal projection of $f(t)=t^{3}$ to H.

MATH 461 EXAM \# 3 Problem 3 April 29, 2005

Name:
TA:
Section:

Suppose there are square matrices A_{1}, A_{2}, and A_{3}. The characteristic polynomial of A_{1} is $\left(t^{2}-1\right)\left(t^{2}+2 t+5\right)$. The characteristic polynomials of A_{2} and A_{3} are the same, $(t-1)(t+6) t^{2}$. All of the eigenspaces of A_{2} have dimension 1. One of the eigenspaces of A_{3} has dimension bigger than 1.
3a) [8] Find all the eigenvalues of each A_{j}.

3b) [6] Which of the A_{i} are diagonalizable, that is, for which A_{i} is there a real matrix P so that $P^{-1} A_{i} P$ is diagonal?

3c) [3] Which eigenspace of A_{3} has dimension bigger than 1 and what is its dimension?

3d) [3] Which of the A_{i} are invertible?

MATH 461 EXAM \# 3 Problem $4 \quad$ April 29, 2005

Name:
TA:
Section:

For each of the following matrices:

+ Find all of its eigenvalues and an eigenvector for each eigenvalue.
+ If possible, find a (possibly complex) matrix P and a diagonal matrix D so that the given matrix equals $P D P^{-1}$.
+ If possible, find a real matrix Q so that the given matrix is $Q C Q^{-1}$ where C is of the form $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
4a) $[15]\left[\begin{array}{cc}4 & -1 \\ 4 & 0\end{array}\right]$

4b) $[15]\left[\begin{array}{cc}4 & -1 \\ 5 & 0\end{array}\right]$

