
MATH 461 EXAM # 3 Problem 1 April 29, 2005

Name: TA: Section:

Let A =

 1 0
0 1
1 2

 and b =

 6
0
0

.

1a) [20] Find all least squares solutions to Ax = b.

Answer: The normal equation is AT Ax = AT b. Recall that AT A is the square matrix

of dot products of the columns of A with each other and AT b is the dot products of the

columns of A with b, so the normal equation is:

[
2 2
2 5

]
x =

[
6
0

]

Solving this by gaussian elimination gives:

[
2 2 6
2 5 0

]
∼

[
2 2 6
0 3 −6

]
∼

[
1 1 3
0 1 −2

]
∼

[
1 0 5
0 1 −2

]

So x =
[

5
−2

]
is the only least squares solution.

1b) [5] Find the orthogonal projection of b to the column space of A.

Answer: If x is a least squares solution then the projection b̂ of b to the column space of

A is Ax. So in this case the projection is

 1 0
0 1
1 2

 [
5
−2

]
=

 5
−2
1



Note that since the columns of A are not orthogonal, the projection is not given by the

formula on page 395 with ui the columns of A.
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Consider the vector space C[0, 1] of continuous real valued functions on the interval
[0, 1] with inner product 〈f, g〉 =

∫ 1

0
f(t)g(t) dt. Let H be the subspace spanned by the

functions 1 and t. Let T :H → H be differentiation, T (f) = df/dt.

2a) [10] Find an orthonormal basis B for H.

Answer: Using the Gram Schmidt process to get an orthogonal basis first, we set u1 = 1
and then set u2 = t−(〈t, 1〉/〈1, 1〉)1. We have 〈t, 1〉 =

∫ 1

0
t dt = 1/2 and 〈1, 1〉 =

∫ 1

0
1 dt = 1,

so u2 = t−1/2. So an orthogonal basis of H is {1, t−1/2} to make it orthonormal, calculate

〈1, 1〉 =
∫ 1

0
1 dt = 1 and 〈t− 1/2, t− 1/2〉 =

∫ 1

0
(t− 1/2)2 dt = (t− 1/2)3/3]10 = (1/2)3/3−

(−1/2)3/3 = 1/12. So an orthonormal basis is {1/
√

1, (t−1/2)/
√

1/12} = {1, 2
√

3t−
√

3}.
Let us call v1 = 1 and v2 = 2

√
3t−

√
3.

2b) [10] Find the matrix of T relative to the basis B you found in part a).

Answer: We have T (v1) = T (1) = 0 = 0v11 + 0v2 and T (v2) = T (2
√

3t −
√

3) = 2
√

3 =

2
√

3v1 + 0v2. So the matrix of T relative to the basis B is

[
0 2

√
3

0 0

]
.

2c) [5] Find the orthogonal projection of f(t) = t3 to H.

Answer: This is 〈t3, v1〉v1 + 〈t3, v2〉v2. We have

〈t3, v1〉 =
∫ 1

0

t3 dt = 1/4

〈t3, v2〉 =
∫ 1

0

t3(2
√

3t−
√

3) dt = 2
√

3t5/5−
√

3t4/4]10 = 2
√

3/5−
√

3/4 = 3
√

3/20

So the projection is

1/4 + 3
√

3/20(2
√

3t−
√

3) = 9t/10− 1/5

An alternative calculation uses the orthogonal basis to avoid square roots: 〈t3, u1〉 = 1/4
and 〈t3, u2〉 =

∫ 1

0
t3(t − 1/2) dt = 3/40. Then the projection by the formula on page 395

is:

((1/4)/1)1 + ((3/40)/(1/12))(t− 1/2) = 1/4 + (9/10)(t− 1/2) = 9t/10− 1/5
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Suppose there are square matrices A1, A2, and A3. The characteristic polynomial of
A1 is (t2 − 1)(t2 + 2t + 5). The characteristic polynomials of A2 and A3 are the same,
(t− 1)(t + 6)t2. All of the eigenspaces of A2 have dimension 1. One of the eigenspaces of
A3 has dimension bigger than 1.
3a) [8] Find all the eigenvalues of each Aj .

Answer: The eigenvalues are the roots of the characteristic polynomial. So the eigenvalues

of A1 are the roots of t2 − 1 (which are ±1) and the roots of t2 + 2t + 5 which are

(−2±
√

22 − 4 · 5)/2 = −1± 2i. So the eigenvalues of A1 are 1,−1,−1 + 2i,−1− 2i. The

eigenvalues of A2 and A3 are the same, 1,−6, 0 where 0 has multiplicity 2.

3b) [6] Which of the Ai are diagonalizable, that is, for which Ai is there a real matrix P

so that P−1AiP is diagonal?

Answer: While A1 is diagonalizable using a complex P it is not diagonalizable using a real

P since it has complex eigenvalues and hence complex eigenvectors. Since the columns of

P need to be eigenvectors of A, P could not be real. We know A2 is not diagonalizable by

Theorem 7b on page 324, since the dimension of the 0 eigenspace is not 2. But by c) below,

all eigenspaces of A3 have dimension equaling the multiplicity, so A3 is diagonalizable.

3c) [3] Which eigenspace of A3 has dimension bigger than 1 and what is its dimension?

Answer: By Theorem 7 on page 324, an eigenvalue with an eigenspace of dimension bigger

than one must have multiplicity bigger than 1. So the eigenvalue must be 0. Again by

thm 7 the maximum dimension is the multiplicity, 2. So the dimension of the 0 eigenspace

is exactly 2.

3d) [3] Which of the Ai are invertible?

Answer: Since the null space of a matrix is its 0 eigenspace, a square matrix is invertible

if and only if 0 is not an eigenvalue. So A1 is invertible and A2 and A3 are not.
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For each of the following matrices:
+ Find all of its eigenvalues and an eigenvector for each eigenvalue.
+ If possible, find a (possibly complex) matrix P and a diagonal matrix D so that the

given matrix equals PDP−1.
+ If possible, find a real matrix Q so that the given matrix is QCQ−1 where C is of the

form C =
[

a −b
b a

]
.

4a) [15]
[

4 −1
4 0

]
Answer: The characteristic polynomial is t2 − 4t + 4 = (t − 2)2 so the only eigenvalue

is 2. The 2 eigenspace is the null space of

[
4 −1
4 0

]
− 2I2 =

[
2 −1
4 −2

]
Using Gaussian

elimination: [
2 −1 0
4 −2 0

]
∼

[
2 −1 0
0 0 0

]
so the null space is the span of (1 2)T . So (1 2)T is an eigenvector for the eigenvalue 2.

But since R2 does not have a basis of eigenvectors we know P and D cannot be found,

(since the columns of P must be a basis of eigenvectors). Likewise, Q and C only exist for

non real eigenvalues.

4b) [15]
[

4 −1
5 0

]
Answer: The characteristic polynomial is t2 − 4t + 5 which has roots

t = (4±
√

42 − 4 · 5)/2 = 2± i

Consider the eigenvalue 2− i. Then its eigenspace is the null space of[
4 −1
5 0

]
− (2− i)I2 =

[
2 + i −1

5 −2 + i

]
Without even doing complex arithmetic we know the rows of this matrix must be linearly

dependent, since it is not invertible, so the second row is a multiple of the first. Thus

Gaussian elimination gives us:[
2 + i −1 0

5 −2 + i 0

]
∼

[
2 + i −1 0

0 0 0

]



and we see that the null space is the span of

[
1

2 + i

]
. So an eigenvector for 2 − i is[

1
2 + i

]
. Taking complex conjugates, an eigenvector for 2 + i is

[
1

2− i

]
. So we may take

P =
[

1 1
2 + i 2− i

]
and D =

[
2− i 0

0 2 + i

]
. To make Q, take the real and imaginary

parts of an eigenvector, so we may take Q =
[

1 0
2 1

]
. The entries of C will be the real

and imaginary parts of the eigenvalue, so C =
[

2 1
−1 2

]
or possibly

[
2 −1
1 2

]
, I can never

remember which. But you did not have to tell me what C was. Checking, we see that

Q

[
2 −1
1 2

]
Q−1 =

[
1 0
2 1

] [
2 −1
1 2

] [
1 0
−2 1

]
=

[
1 0
2 1

] [
4 −1
−3 2

]
=

[
4 −1
5 0

]

so C =
[

2 −1
1 2

]
.


