Name:
TA:
Section:

Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right]$.
1a) [20] Find all least squares solutions to $A \mathbf{x}=\mathbf{b}$.
Answer: The normal equation is $A^{T} A x=A^{T} b$. Recall that $A^{T} A$ is the square matrix of dot products of the columns of A with each other and $A^{T} b$ is the dot products of the columns of A with b, so the normal equation is:

$$
\left[\begin{array}{ll}
2 & 2 \\
2 & 5
\end{array}\right] x=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Solving this by gaussian elimination gives:

$$
\left[\begin{array}{ccc}
2 & 2 & 6 \\
2 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
2 & 2 & 6 \\
0 & 3 & -6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & -2
\end{array}\right]
$$

So $x=\left[\begin{array}{c}5 \\ -2\end{array}\right]$ is the only least squares solution.
1b) [5] Find the orthogonal projection of \mathbf{b} to the column space of A.
Answer: If x is a least squares solution then the projection \hat{b} of b to the column space of A is $A x$. So in this case the projection is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
5 \\
-2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right]
$$

Note that since the columns of A are not orthogonal, the projection is not given by the formula on page 395 with u_{i} the columns of A.

MATH 461 EXAM \# 3 Problem 2 April 29, 2005

Name:
TA:
Section:

Consider the vector space $C[0,1]$ of continuous real valued functions on the interval $[0,1]$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Let H be the subspace spanned by the functions 1 and t. Let $T: H \rightarrow H$ be differentiation, $T(f)=d f / d t$.
2a) [10] Find an orthonormal basis \mathcal{B} for H.
Answer: Using the Gram Schmidt process to get an orthogonal basis first, we set $u_{1}=1$ and then set $u_{2}=t-(\langle t, 1\rangle /\langle 1,1\rangle) 1$. We have $\langle t, 1\rangle=\int_{0}^{1} t d t=1 / 2$ and $\langle 1,1\rangle=\int_{0}^{1} 1 d t=1$, so $u_{2}=t-1 / 2$. So an orthogonal basis of H is $\{1, t-1 / 2\}$ to make it orthonormal, calculate $\langle 1,1\rangle=\int_{0}^{1} 1 d t=1$ and $\left.\langle t-1 / 2, t-1 / 2\rangle=\int_{0}^{1}(t-1 / 2)^{2} d t=(t-1 / 2)^{3} / 3\right]_{0}^{1}=(1 / 2)^{3} / 3-$ $(-1 / 2)^{3} / 3=1 / 12$. So an orthonormal basis is $\{1 / \sqrt{1},(t-1 / 2) / \sqrt{1 / 12}\}=\{1,2 \sqrt{3} t-\sqrt{3}\}$. Let us call $v_{1}=1$ and $v_{2}=2 \sqrt{3} t-\sqrt{3}$.
2b) [10] Find the matrix of T relative to the basis \mathcal{B} you found in part a).
Answer: We have $T\left(v_{1}\right)=T(1)=0=0 v_{1} 1+0 v_{2}$ and $T\left(v_{2}\right)=T(2 \sqrt{3} t-\sqrt{3})=2 \sqrt{3}=$ $2 \sqrt{3} v_{1}+0 v_{2}$. So the matrix of T relative to the basis \mathcal{B} is $\left[\begin{array}{cc}0 & 2 \sqrt{3} \\ 0 & 0\end{array}\right]$.
2c) [5] Find the orthogonal projection of $f(t)=t^{3}$ to H.
Answer: This is $\left\langle t^{3}, v_{1}\right\rangle v_{1}+\left\langle t^{3}, v_{2}\right\rangle v_{2}$. We have

$$
\begin{gathered}
\left\langle t^{3}, v_{1}\right\rangle=\int_{0}^{1} t^{3} d t=1 / 4 \\
\left.\left\langle t^{3}, v_{2}\right\rangle=\int_{0}^{1} t^{3}(2 \sqrt{3} t-\sqrt{3}) d t=2 \sqrt{3} t^{5} / 5-\sqrt{3} t^{4} / 4\right]_{0}^{1}=2 \sqrt{3} / 5-\sqrt{3} / 4=3 \sqrt{3} / 20
\end{gathered}
$$

So the projection is

$$
1 / 4+3 \sqrt{3} / 20(2 \sqrt{3} t-\sqrt{3})=9 t / 10-1 / 5
$$

An alternative calculation uses the orthogonal basis to avoid square roots: $\left\langle t^{3}, u_{1}\right\rangle=1 / 4$ and $\left\langle t^{3}, u_{2}\right\rangle=\int_{0}^{1} t^{3}(t-1 / 2) d t=3 / 40$. Then the projection by the formula on page 395 is:

$$
((1 / 4) / 1) 1+((3 / 40) /(1 / 12))(t-1 / 2)=1 / 4+(9 / 10)(t-1 / 2)=9 t / 10-1 / 5
$$

MATH 461 EXAM \# 3 Problem 3 April 29, 2005

Name:
TA:
Section:

Suppose there are square matrices A_{1}, A_{2}, and A_{3}. The characteristic polynomial of A_{1} is $\left(t^{2}-1\right)\left(t^{2}+2 t+5\right)$. The characteristic polynomials of A_{2} and A_{3} are the same, $(t-1)(t+6) t^{2}$. All of the eigenspaces of A_{2} have dimension 1. One of the eigenspaces of A_{3} has dimension bigger than 1.
3a) [8] Find all the eigenvalues of each A_{j}.
Answer: The eigenvalues are the roots of the characteristic polynomial. So the eigenvalues of A_{1} are the roots of $t^{2}-1$ (which are ± 1) and the roots of $t^{2}+2 t+5$ which are $\left(-2 \pm \sqrt{2^{2}-4 \cdot 5}\right) / 2=-1 \pm 2 \mathbf{i}$. So the eigenvalues of A_{1} are $1,-1,-1+2 \mathbf{i},-1-2 \mathbf{i}$. The eigenvalues of A_{2} and A_{3} are the same, $1,-6,0$ where 0 has multiplicity 2.

3b) [6] Which of the A_{i} are diagonalizable, that is, for which A_{i} is there a real matrix P so that $P^{-1} A_{i} P$ is diagonal?

Answer: While A_{1} is diagonalizable using a complex P it is not diagonalizable using a real P since it has complex eigenvalues and hence complex eigenvectors. Since the columns of P need to be eigenvectors of A, P could not be real. We know A_{2} is not diagonalizable by Theorem 7 b on page 324 , since the dimension of the 0 eigenspace is not 2 . But by c) below, all eigenspaces of A_{3} have dimension equaling the multiplicity, so A_{3} is diagonalizable.
3c) [3] Which eigenspace of A_{3} has dimension bigger than 1 and what is its dimension?
Answer: By Theorem 7 on page 324, an eigenvalue with an eigenspace of dimension bigger than one must have multiplicity bigger than 1. So the eigenvalue must be 0. Again by thm 7 the maximum dimension is the multiplicity, 2. So the dimension of the 0 eigenspace is exactly 2.
3d) [3] Which of the A_{i} are invertible?
Answer: Since the null space of a matrix is its 0 eigenspace, a square matrix is invertible if and only if 0 is not an eigenvalue. So A_{1} is invertible and A_{2} and A_{3} are not.

MATH 461 EXAM \# 3 Problem 4 April 29, 2005

Name:
TA:
Section:

For each of the following matrices:

+ Find all of its eigenvalues and an eigenvector for each eigenvalue.
+ If possible, find a (possibly complex) matrix P and a diagonal matrix D so that the given matrix equals $P D P^{-1}$.
+ If possible, find a real matrix Q so that the given matrix is $Q C Q^{-1}$ where C is of the form $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
4a) $[15]\left[\begin{array}{cc}4 & -1 \\ 4 & 0\end{array}\right]$
Answer: The characteristic polynomial is $t^{2}-4 t+4=(t-2)^{2}$ so the only eigenvalue is 2. The 2 eigenspace is the null space of $\left[\begin{array}{cc}4 & -1 \\ 4 & 0\end{array}\right]-2 I_{2}=\left[\begin{array}{cc}2 & -1 \\ 4 & -2\end{array}\right]$ Using Gaussian elimination:

$$
\left[\begin{array}{lll}
2 & -1 & 0 \\
4 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so the null space is the span of $\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$. So $\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$ is an eigenvector for the eigenvalue 2. But since \mathbb{R}^{2} does not have a basis of eigenvectors we know P and D cannot be found, (since the columns of P must be a basis of eigenvectors). Likewise, Q and C only exist for non real eigenvalues.
4b) $[15]\left[\begin{array}{cc}4 & -1 \\ 5 & 0\end{array}\right]$
Answer: The characteristic polynomial is $t^{2}-4 t+5$ which has roots

$$
t=\left(4 \pm \sqrt{4^{2}-4 \cdot 5}\right) / 2=2 \pm \mathbf{i}
$$

Consider the eigenvalue $2-\mathbf{i}$. Then its eigenspace is the null space of

$$
\left[\begin{array}{cc}
4 & -1 \\
5 & 0
\end{array}\right]-(2-\mathbf{i}) I_{2}=\left[\begin{array}{cc}
2+\mathbf{i} & -1 \\
5 & -2+\mathbf{i}
\end{array}\right]
$$

Without even doing complex arithmetic we know the rows of this matrix must be linearly dependent, since it is not invertible, so the second row is a multiple of the first. Thus Gaussian elimination gives us:

$$
\left[\begin{array}{ccc}
2+\mathbf{i} & -1 & 0 \\
5 & -2+\mathbf{i} & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
2+\mathbf{i} & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and we see that the null space is the span of $\left[\begin{array}{c}1 \\ 2+\mathbf{i}\end{array}\right]$. So an eigenvector for $2-\mathbf{i}$ is $\left[\begin{array}{c}1 \\ 2+\mathbf{i}\end{array}\right]$. Taking complex conjugates, an eigenvector for $2+\mathbf{i}$ is $\left[\begin{array}{c}1 \\ 2-\mathbf{i}\end{array}\right]$. So we may take $P=\left[\begin{array}{cc}1 & 1 \\ 2+\mathbf{i} & 2-\mathbf{i}\end{array}\right]$ and $D=\left[\begin{array}{cc}2-\mathbf{i} & 0 \\ 0 & 2+\mathbf{i}\end{array}\right]$. To make Q, take the real and imaginary parts of an eigenvector, so we may take $Q=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$. The entries of C will be the real and imaginary parts of the eigenvalue, so $C=\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]$ or possibly $\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]$, I can never remember which. But you did not have to tell me what C was. Checking, we see that

$$
\begin{aligned}
& \qquad Q\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right] Q^{-1}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{cc}
4 & -1 \\
5 & 0
\end{array}\right] \\
& \text { so } C=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right] .
\end{aligned}
$$

