Factoring intervals from bundles

In this exposition we say a topological space X is nice if it is locally compact, normal,
and second countable. The theorems are true for paracompact (Hausdorff) spaces too, see
Hirsch.

If € is a vector bundle and f: B — B(&) is continuous then there is an induced vector
bundle f(€) with B(f*(€)) = B, B(/*(€)) = {(z.,y) € B x E©) | f(z) = m(©)(y)},
and 7(f*(€))(xz,y) = x. A special case is where f is inclusion B C B(¢) then we may
take E(f*(€)) = n(£)~1(B) and 7(f*(£)) the restriction of 7. In this case we also denote
Ele = f7(8)-

If £ is a vector bundle and X is any space then there is a vector bundle ¢ x X with
E€xX)=FE) x X, B xX)=DB() xX, and 7(§ x X) = 7(§) x idx. Of course
§ X X|pB(¢e)xa 1 isomorphic to § for each z € X.

Let I =10,1].

Theorem. If B is nice and £ is a vector bundle over B x I, then all the restricted bundles
&|Bx+ are isomorphic and in fact there is a bundle isomorphism ¢:& — (§|pxo) X 1.

Corollary. If B is nice then homotopic maps fo, f1: B — B(§) induce isomorphic bundles

17 (€).-
Proof: If F: B x I — B(£) is a homotopy then the theorem says F*(§)|pxo is isomorphic
to F*(§)|px1. But each F*(§)|px; is isomorphic to f(§). =

Corollary. Any vector bundle over a nice contractible space is trivial.

Proof: Let F:B(§) x I — B({) be a homotopy from the identity to a constant map
f(x) = c¢. By the previous corollary, the indentity and the constant map induce isomorphic
bundles. But id*(£) = € and f*(€) is trivial, E(f*(£)) = B(¢) x m(£)7(c). u

Before proving the theorem we’ll present some technical lemmas.

Lemma 1. Let & be a vector bundle with B(§) = B x I. Then each x € B has a
neighborhood V' so that |y« is trivial.

Proof: We may pick bundle charts ¢q:Vy X I, x R¥ — E(§) so that x x I € UV, x I,
where the I, are intervals and V,, are open. By compactness of I we only need a finite
number of these. Let V' = [V, (a finite intersection so V is open). Reindex the « to
1,2,...,n and choose t; € I s0 0 =ty < t; < -+- < t, = 1 and [t;_1,t;] C I;. Define
0V x I xRF — E(&) by p(x,t,y) = @i(z,t,y) if t;_1 <t < t; where y/ is defined by
So(zvti—lay) :soi(:t,ti_l,y’)- u

Lemma 2. Let £ be a vector bundle with B(§) = B x I, let A C U C B with A closed
and U open, let K C B be compact, and suppose we have a vector bundle isomorphism
v:&luxo X I — &|luxr with ¢(z,0) = z. Suppose also that B is normal. Then there is a
neighborhood V' of AU K and a vector bundle isomorphism 1:£|y xo X I — &|y x5 so that
1 restricts to ¢ on (§|axo) X I and ¥(z,0) = z.
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Proof: By Lemma 1 we may cover K by open sets Vi, Vs, ..., V), so that there are bundle
charts pu;: V; x I x R — 7(&)~%(V; x I). Pick closed K; C V; so K C Ni_, Ki. We
have maps x;: (U NV;) x I — Gl(k,R) where p;(x,t, ki(z,t)y) = @(ui(z,0,y),t). Note
ki(x,0) = id. This k; measures the difference between the factorization of the bundle given
by ¢ and that given by p;. Since B is normal, we may pick a continuous : B — [0, 1] with
support in U so that |y~ = 1 for some neighborhood U"” of A in U. If U' = U" UV, we
have a vector bundle isomorphism ¢': |y xo X I — &|urx1 given by ¢ on €|y« X I and
given by (10,(/‘1(377 Ovy)7t) = Mi(ajvta nz(x,tﬁ(x))y) on 5"/1 x0 X I Enlarge Ato AU Kl and
do the same with V5, then V3 and so on. Eventually we are done. n

To prove the theorem note that since B is nice there is a countable collection of
compact sets K; which cover B so that K;;; C IntK; for all ¢ and K, is empty. By
Lemma 2 with A empty and K = Ks,1+1 — Int K9, we have vector bundle isomorphisms
Van+t1: (§lvmnyix0) X I — &|us,, 1 x1 for some neighborhoods Usp 11 of K41 —IntKs,. Now
apply Lemma 2 with A = Uz Ko 1 —IntKs; and K = Ky, —Int K9, 1 to get vector bundle
isomorphisms @a,,: (§|v,, x0) X I — &|u,, x1 for some neighborhoods Us,, of Ky, —IntKs, 1
SO pan(z,t) = @i(z,t) if m(&)(z) € (K; — IntK;_1) x 0, i = 2n £ 1. Piece these together
to get a vector bundle isomorphism ¢: (§|pxo) X I — & by letting ¢(z,t) = @;(z,t) if
ﬂ(f)(z) € (KZ — IntKi_l) x 0. [ ]

The basic outline of the above proof is one used often in differential topology. You want
some sort of structure on a space (usually a manifold, but here a vector bundle). You prove
a relative local version, meaning you assume you have the structure on a neighborhood of
a closed set, and then extend this structure to a chart without changing it on the closed
set. (We did this in the proof of Lemma 2.) In the compact case we are done, since we can
cover with a finite number of charts. But the noncompact case can be proven as above,
by writing the space as a union of compact pieces K; — IntK;_;, putting the structure on
a neighborhood of every other band, then filling in on the remaining bands. Hirsch even
formalizes this in globalization metatheorems but I find that rather opaque.

Note that there was nothing special about vector spaces used in the proofs above, the
same proofs work for fiber bundles, where 7: E — B is a fiber bundle with any structure
group, see pages 106-107 of Bredon for definitions.



