
Factoring intervals from bundles

In this exposition we say a topological space X is nice if it is locally compact, normal,
and second countable. The theorems are true for paracompact (Hausdorff) spaces too, see
Hirsch.

If ξ is a vector bundle and f :B → B(ξ) is continuous then there is an induced vector
bundle f∗(ξ) with B(f∗(ξ)) = B, E(f∗(ξ)) = {(x, y) ∈ B × E(ξ) | f(x) = π(ξ)(y)},
and π(f∗(ξ))(x, y) = x. A special case is where f is inclusion B ⊂ B(ξ) then we may
take E(f∗(ξ)) = π(ξ)−1(B) and π(f∗(ξ)) the restriction of π. In this case we also denote
ξ|B = f∗(ξ).

If ξ is a vector bundle and X is any space then there is a vector bundle ξ ×X with
E(ξ × X) = E(ξ) × X, B(ξ × X) = B(ξ) × X, and π(ξ × X) = π(ξ) × idX . Of course
ξ ×X|B(ξ)×x is isomorphic to ξ for each x ∈ X.

Let I = [0, 1].

Theorem. If B is nice and ξ is a vector bundle over B× I, then all the restricted bundles
ξ|B×t are isomorphic and in fact there is a bundle isomorphism ϕ: ξ → (ξ|B×0)× I.

Corollary. If B is nice then homotopic maps f0, f1:B → B(ξ) induce isomorphic bundles
f∗i (ξ).

Proof: If F :B × I → B(ξ) is a homotopy then the theorem says F ∗(ξ)|B×0 is isomorphic
to F ∗(ξ)|B×1. But each F ∗(ξ)|B×i is isomorphic to f∗i (ξ).

Corollary. Any vector bundle over a nice contractible space is trivial.

Proof: Let F :B(ξ) × I → B(ξ) be a homotopy from the identity to a constant map
f(x) = c. By the previous corollary, the indentity and the constant map induce isomorphic
bundles. But id∗(ξ) = ξ and f∗(ξ) is trivial, E(f∗(ξ)) = B(ξ)× π(ξ)−1(c).

Before proving the theorem we’ll present some technical lemmas.

Lemma 1. Let ξ be a vector bundle with B(ξ) = B × I. Then each x ∈ B has a
neighborhood V so that ξ|V×I is trivial.

Proof: We may pick bundle charts ϕα:Vα × Iα × Rk → E(ξ) so that x × I ⊂
⋃
Vα × Iα

where the Iα are intervals and Vα are open. By compactness of I we only need a finite
number of these. Let V =

⋂
Vα (a finite intersection so V is open). Reindex the α to

1, 2, . . . , n and choose ti ∈ I so 0 = t0 < t1 < · · · < tn = 1 and [ti−1, ti] ⊂ Ii. Define
ϕ:V × I × Rk → E(ξ) by ϕ(x, t, y) = ϕi(x, t, y′) if ti−1 ≤ t ≤ ti where y′ is defined by
ϕ(x, ti−1, y) = ϕi(x, ti−1, y

′).

Lemma 2. Let ξ be a vector bundle with B(ξ) = B × I, let A ⊂ U ⊂ B with A closed
and U open, let K ⊂ B be compact, and suppose we have a vector bundle isomorphism
ϕ: ξ|U×0 × I → ξ|U×I with ϕ(z, 0) = z. Suppose also that B is normal. Then there is a
neighborhood V of A∪K and a vector bundle isomorphism ψ: ξ|V×0 × I → ξ|V×I so that
ψ restricts to ϕ on (ξ|A×0)× I and ψ(z, 0) = z.
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Proof: By Lemma 1 we may cover K by open sets V1, V2, . . . , Vn so that there are bundle
charts µi:Vi × I × Rk → π(ξ)−1(Vi × I). Pick closed Ki ⊂ Vi so K ⊂

⋂n
i=1Ki. We

have maps κi: (U ∩ Vi) × I → Gl(k,R) where µi(x, t, κi(x, t)y) = ϕ(µi(x, 0, y), t). Note
κi(x, 0) = id. This κi measures the difference between the factorization of the bundle given
by ϕ and that given by µi. Since B is normal, we may pick a continuous β:B → [0, 1] with
support in U so that β|U ′′ = 1 for some neighborhood U ′′ of A in U . If U ′ = U ′′ ∪ V1 we
have a vector bundle isomorphism ϕ′: ξ|U ′×0 × I → ξ|U ′×I given by ϕ on ξ|U ′′×0 × I and
given by ϕ′(µ1(x, 0, y), t) = µi(x, t, κi(x, tβ(x))y) on ξ|V1×0 × I. Enlarge A to A ∪K1 and
do the same with V2, then V3 and so on. Eventually we are done.

To prove the theorem note that since B is nice there is a countable collection of
compact sets Ki which cover B so that Ki+1 ⊂ IntKi for all i and K0 is empty. By
Lemma 2 with A empty and K = K2n+1 − IntK2n we have vector bundle isomorphisms
ϕ2n+1: (ξ|U2n+1×0)×I → ξ|U2n+1×I for some neighborhoods U2n+1 of K2n+1−IntK2n. Now
apply Lemma 2 with A =

⋃
iK2i+1−IntK2i and K = K2n−IntK2n−1 to get vector bundle

isomorphisms ϕ2n: (ξ|U2n×0)×I → ξ|U2n×I for some neighborhoods U2n of K2n−IntK2n−1

so ϕ2n(z, t) = ϕi(z, t) if π(ξ)(z) ∈ (Ki − IntKi−1) × 0, i = 2n ± 1. Piece these together
to get a vector bundle isomorphism ϕ: (ξ|B×0) × I → ξ by letting ϕ(z, t) = ϕi(z, t) if
π(ξ)(z) ∈ (Ki − IntKi−1)× 0.

The basic outline of the above proof is one used often in differential topology. You want
some sort of structure on a space (usually a manifold, but here a vector bundle). You prove
a relative local version, meaning you assume you have the structure on a neighborhood of
a closed set, and then extend this structure to a chart without changing it on the closed
set. (We did this in the proof of Lemma 2.) In the compact case we are done, since we can
cover with a finite number of charts. But the noncompact case can be proven as above,
by writing the space as a union of compact pieces Ki − IntKi−1, putting the structure on
a neighborhood of every other band, then filling in on the remaining bands. Hirsch even
formalizes this in globalization metatheorems but I find that rather opaque.

Note that there was nothing special about vector spaces used in the proofs above, the
same proofs work for fiber bundles, where π:E → B is a fiber bundle with any structure
group, see pages 106-107 of Bredon for definitions.
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