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Differential topology notes
Following is what we did each day with references to the bibliography at the end.

We defined smooth manifolds is 3 ways- patching charts [Br, 68], functional structure [Br, 69], and
submanifold of RN [BJ, 9] (I can’t seem to find this in [Br]. X is a submanifold of RY if for each x
in X, there is an open neighborhood U and a diffeomorphism g : U — V where V is open in RN and
g Y(R™) = U N X.) You can define C* manifolds for & = 0,1,...,00,w also piecewise linear, Lipchitz,
affine, complex manifolds and many other kinds but we will stick to C°°. Smooth will always mean C'*°.
Any C* manifold k = 1,2, ... has a unique smooth structure and any smooth manifold has a unique real
analytic (C*) structure (we’ll see these facts later when we know transversality and normal bundles).
However some C° manifolds of dimension > 4 have no smooth structure or have many different smooth
structures (probably beyond the scope of this course). We then gave examples of manifolds in some low
dimensions.

dim 0 Countable unions of points with the discrete topology. (complete classification)
dim 1 Countable unions of lines (R!) and circles (S'). (complete classification, [Mil, 55])
dim 2 Any compact connected 2 dimensional manifold is diffeomorphic to either a sphere connected sum
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some tori (S x S') or the connected sum of projective planes (RP?) [Ki, 79]. We also gave some
noncompact examples, R? and the Mobius band and an infinite connected sum of tori. Any open
subset of a manifold is a manifold so that gives lots of examples.

We looked at ways of generating smooth manifolds.

e Any open subset of a smooth manifold is naturally a smooth manifold. (just restrict charts)

e The cartesian product of two manifolds is a manifold. (take products of charts)

e If you glue two manifolds along diffeomorphic open subsets and the result is Hausdorff, then you
have a smooth manifold. (cover by charts in one or the other manifold)

e The connected sum of two manifolds is a manifold. Note: we will show later that there are at most
two possibilities for the connected sum of two connected manifolds, despite the choices involved in
the construction.

o If f: M — N is a smooth map between smooth manifolds, then for almost all points y € N, the
inverse image f~!(y) is a manifold. In fact, for almost all smooth submanifolds Y C N, f~1(Y) is
a submanifold of X. (We will see why when we know more about transversality.) For example, the
solutions to a random set of smooth equations in R" is a submanifold.

e If M is a manifold and G is a group of self-diffeomorphisms of M, then sometimes M/G is a
smooth manifold. For example this is true if each point of M has a neighborhood U so U N g(U)
is empty for each nonidentity ¢ € G. Examples, RP™ = S" /G where G is the 2 group generated by
the antipodal map. L(p,q) the lens space S®/G where G is the cyclic group of order p generated
by (z,w) — (2e*>™/P we2d™/P) where p and ¢ are relatively prime and z,w are complex with
|z]2 + |w|? = 1. Another example is C" ™! —0/G = CP" where G is the diffeomorphisms of the form
(20,215 -y 2n) — (W20,w21,...,wz,) where w € C — 0.

e Many natural spaces in mathematics end up being manifolds. For example, O(n) the space of
orthogonal n x n matrices is a smooth submanifold of R"". The Grassmanian G(n, k) of k planes
in n space is a smooth manifold. One way to describe G(n, k) is as the set of n x n matrices P so
P = PT, P?2 = P, and traceP = k, here P is the matrix of orthogonal projection to a k dimensional
linear subspace. Another way is the quotient. O(n)/O(k) x O(n — k) where we quotient out by

matrices of the form (61 g) with A € O(k) and B € O(n — k).

9/8 We looked at the tangent space to smooth manifold. If dimM = m and p € M, then T,(M) is an

m dimensional vector space which we can think of as an infinitesimal view of the manifold at p. We
have the tangent bundle T(M) = U,cp, Tp(M) with some topology which we explain below. If M
is a smooth curve or surface in space we have the notion of tangent line or plane from multivariable
calculus. We could define the tangent plane to a surface at p as the union of tangent vectors to curves
through p. So for a general smooth manifold M we could define T,,(M) to be equivalence classes for

1



9/10

9/12

9/15

9/17

some equivalence relation on the space of curves through p. This is useful for thinking of individual
tangent vectors but not for T),(M) (for example the vector sum is not at all natural.) Instead, use
gluing. If U C R™ is open, then T(U) = U x R™ where each R™ factor is a vector space. If o:U — R™
and t: V' — R™ are two charts then T(U) = U x R™ and T(V) = V x R™ and we need to figure out
how to glue them together to get T(U U V). If p € UNV and a: (R,0) — (R™,¢(p)) is a smooth
curve with tangent vector o/(0) at ¢(p), then by the chain rule, D(¢p~1)a’(0) = (Yo~ 'a)(0) where
Dh stands for the Jacobian matrix of partial derivatives of a map h. Thus to get T(U UV') we identify
(p,x) € U x R™ with (p, D(¢p~1)x) € V x R™. Gluing all the charts of M in this way gives us T(M).
A third view of a tangent vector is as a directional derivative. If v € T,(M), represent v by some curve
a: (R,0) — (M,p). Then for any f € C°(M,R) we let v(f) = d(f o a(t))/dt|t=0. Note v is linear
and satisfies the product rule v(fg) = f(p)v(g) + g(p)v(f). You could define T,(M) as all linear maps
satisfying the product rule which are local (so v(f) = v(g) if f(z) = g(z) for all  near p). See [BJ,
13-21], [Br, 76-79], [H, 17]. We often abbreviate T(M) = TM and T,(M) = T,M. If h: M — N is
smooth we have a map dh: TM — TN. In local coordinates we may suppose M C R™ and N C R”
and then dh(z,y) = (h(x), Dh(y)) where Dh as before is the n x m matrix of first partials. We have
d(hog) =dhodg. also if f: M — R, then df(v) = v(f). The map dh gives the local linear part of h
since (in R™), h(z) ~ h(p) + Dh - (x — p). Examples T(S1) is trivial, T(S') = S* x R. The tangent
bundle to the Mobius band is nontrivial. The tangent bundle of S? is nontrivial for a subtle reason.

We define vector bundles, m: E — B is a rank k vector bundle if for each z € B, 7=(x) is a vector
space of dimension & and there is a neighborhood U of # and a homeomorphism v: U x R¥ — 7=1(U)
so that m(y,z) = y and for each y € U, the map z — ¥(y, z) is an invertible linear transformation
from R¥ to m~1(y). We call this 1 a bundle chart. Thus T'M is a vector bundle. Two vector bundles
m E — B and 7': B/ — B’ are isomorphic if there are homeomorphisms h: ' — F and g : B’ — B so
7wh = gr’ and each h:7'~!(z) — 7~ 1(g(x)) is a vector space isomorphism. (Or sometimes if B = B’
we require that g be the identity.) If f: B’ — B is continuous there is an induced bundle with total
space B = {(z,y) € B’ x E | f(z) = 7(y)} and projection (x,y) — x. If B’ C B we may restrict
the bundle to B’ which is isomorphic to the induced bundle of the inclusion map. Next time we will
see that if the base space of a bundle is B x [0,1] for B nice, then the bundle splits as a bundle cross
[0,1]. As a consequence, homotopic maps induce isomorphic bundles, and bundles over contractible
spaces are trivial. If ¢;:U; x R¥ — 77Y(U;), i = 0,1 are two bundle charts then we get a gluing
map V: Uy NU; — Gl(k,R) where ¥(z) is the linear isomorphism (k x k nonsingular matrix) so that
Y Mpo(x,y) = (x,¥(x)y). By restricting these gluing maps to various subgroups of Gl(k,R) we get
different types of bundles. For example orientable vector bundles come from the subgroup of positive
determinent matrices. Complex vector bundles come from Gl(k/2,C). It turns out O(k) bundles give
us nothing new since any vector bundle over a paracompact base space can be given an O(k) structure
(essentially because Gl(k,R) deformation retracts to O(k)). Stated without hint of proof is the existence
of a universal bundle FO(k) — BO(k) so that every vector bundle over a nice space is a pullback of this
bundle via a map to BO(k) and in fact there is a one to one correspondence between isotopy classes
of rank k vector bundles over B and homotopy classes of maps from B to BO(k). References [Br,
106-114], [BJ, 22-31], [H, 85-91]

We show that any vector bundle over B x I with B nice splits as a bundle cross I, see [H, 90] or the
writeup I handed out in class.

We classify rank k vector bundles over S™ as being in one to one correspondence with homotopy classes
of maps from (S"~! x¢) to (O(k),id), which is m,_1(O(k),id) if you know about higher homotopy
groups. For example, for each k there are only two isomorphism classes of bundles over S* (since O(k)
has just two path components). For each k > 2 there are two rank k& bundles over S2, there is a Z’s
worth of isomorphism classes of rank 2 bundles over S2, and there is just one line bundle over S?. (This
follows from calculations of w1 (SO(k)), see [Br, 467].)

We introduced the notion of a section of a bundle, a continuous s: B — FE so that m o s = idg. For
example, a section of the tangent bundle of a smooth manifold is a vector field. Note, if the base of
a vector bundle is a smooth manifold, we can define smooth vector bundles (where all bundle chart
gluing maps Uy N Uz — Gl(k,R) are smooth). So we can talk about smooth sections and thus smooth
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vector fields. Any vector bundle over a smooth manifold has a unique smoothing, as we will see later.
Any natural operation on vector spaces gives rise to a corresponding operation on vector bundles. For
example if £ — B and F' — B are vector bundles Whitney sum E & F comes from the direct sum
of vector spaces, then there is the dual E* — B, the tensor product E ® F, Hom(E, F), alternating
multilinear forms Alt*(E) ( [Br, 260]), quadratic forms (a subbundle of the bilinear forms (E ® E)*),
and the quotient E/F (If F' is a subbundle of E). For example we have the dual tangent space T M*
to a manifold, sections of this bundle are called 1-forms, and in general sections of Altk(TM) are called
k-forms. T expect we will have more to say about k-forms later. If M C N is a smooth submanifold we
can define the normal bundle of M in N to be the quotient bundle TN|y; /T M, but for submanifolds
of R¥ you could just as well define it to be the bundle of vectors in TN which are perpendicular to
TM. Note that if M C R™ is a smooth submanifold and £ — M is its normal bundle in R™, then
TM @ E = T(R"™)|pr which is trivial. If @ — B is the bundle of quadratic forms on F, a section
s: B — @ which is always positive definite gives an inner product structure on each vector space fiber.
If B is paracompact, a partition of unity argument shows such sections exist. For example, smooth
manifolds have Reimannian metrics. Some references [Br, 108-114], [H, 85-98], [BJ, 22-43].

Let M and N be manifolds of dimension m and n respectively. Suppose f: M — N is smooth and the
rank of df, is a constant r at all points x € M. Then locally we can find coordinates so f(x1,...,Zm) =
(x1,...,2r,0,...,0) [BJ, 45]. Of special interest are when r = n, called a submersion, and r = m,
called an immersion, or 7 = m = n which is both and also called a local diffeomorphism. If f is a
submersion, then each fiber f~!(z) is a smooth submanifold of dimension m — n. When we prove this
for immersions we see more, namely that the rank n—m bundle f*(TN)/TM (called the normal bundle
of the immersion) has a local diffeomorphism to M which restricts to f on the zero section. If we
consider the case of an embedding (an immersion which is also a homeomorphism to its image), we get
the existence of a tubular neighborhood of the embedding. Since any submanifold is the image of an
embedding (the inclusion is an embedding!) submanifolds have tubular neighborhoods. Later we will
show uniqueness of tubular neighborhoods. References are [Br, 83,93], [H, 21,109], [BJ, 44-50,115-124].

Hirsch in a 1959 TAMS paper showed that (except for the equidimensional case) classifying immersions is
just a bundle problem. For example, if m < n or no component of M is compact, then a continuous map
f: M — R™ can be approximated by an immersion if and only if there is a rank n — m bundle £ — M
so that TM @ E is trivial. (The bundle E will end up being the normal bundle to the immersion). See
[H2] (for m < n) and [H3] (for n = m). We also did a number of miscellaneous things. We looked at a
one to one immersion which is not an imbedding, a line with irrational slope in the torus. Bredon calls
this a submanifold, but we will not. For us, submanifolds are always embedded. We defined isotopy of
submanifolds. We defined manifolds with boundary. A manifold M with boundary has an interior Int M
which is a manifold without boundary, and a boundary dM which is a manifold without boundary of
one lower dimension. We talked briefly about manifolds with corners (which arise for example when you
take the Cartesian product of two manifolds), but quickly dismissed them. The point is that there is a
standard way to smooth the corner to give them the structure of a manifold with boundary in a unique
way, up to diffeomorphism. Next we showed that any continuous map f: M — N can be approximated
by a smooth map, by proving the relative local version and invoking the standard argument. A similar
argument shows that any C* map (k times differentiable) can be approximated by a C* map, so that
all k derivatives are also approximated, but I don’t expect us to make use of that. References [BJ,
88-97,129-131], [Br, 71], [H, 29-30,41-49].

We talked about Sard’s Theorem which says if f: M — N is smooth, then the critical values of f have
measure zero, and in particular the regular values are dense. So if dim M < dim N, f(M) is nowhere
dense. We used Sard’s theorem to prove that if f: M — R™ x R is an immersion and n > 2dim M then
for almost all linear projections m,: R™ x R — R", 7, f is also an immersion. Moreover, if f is one to
one and n > 2dim M + 1 then 7, f is a one to one immersion for almost all v € R™. (m,(z,t) = = — tv).
(“Almost all” means “all but a set of measure zero”.) References [BJ, 56-61], [H, 24-27,67-72], [Mil,
16-19], [Br, 531-534,90-92).

We show that if f: M — N and m = dim M, n = dim N then:
a) f can be approximated by an immersion g if n > 2m.
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b) f can be approximated by a one to one immersion g if n > 2m + 1.

¢) If f is proper, then f can be approximated by an embedding g if n > 2m + 1.
If f is already an immersion or embedding an a neighborhood of a closed set A we may also conclude
fla = gla. I f is smooth, we may take g to be a smooth approximation, we may specify that all
partial derivatives of order < k are close also. The proof follows from the local relative version by the
usual argument. For the local version, essentially take the graph of f which immerses or embeds R™ in
R™ x R™ and use the 9/26 argument above to do generic projections one dimension at a time until we
immerse or 1-1 immerse in R™. If we always choose projections 7, with v very small the result will closely
approximate f. Note f is proper means f~(K) is compact for all compact K. If f is proper then the
approximation g will also be proper, but a proper one to one immersion is an embedding. (In general a
proper continuous one to one onto map between locally compact Hausdorff spaces is a homeomorphism,
which can be seen by extending to the one point compactification.) Since any smooth manifold admits
a proper smooth map to R, we then see that any smooth manifold of dimension m embeds in R?"*!, In
fact, an argument of Whitney shows it embeds in R?™, but as simple examples show, it is not possible
to approximate any map to R?™ by an embedding as one can do in higher dimensions (for proper maps
anyway). We also showed that if n = 2m then f can be approximated by an immersion g which is
at most two to one, and moreover if g(z) = g(y), + # y, then dg,(TM;) + dg,(TM,) = TNy(y so
the image of the immersion looks locally there like two complementary m planes in R?™ (if is proper,
otherwise it could get pretty messy). References [BJ, 65-72], [H, 23-27,53-55], [Br, 91-92].

Often proofs are easier if we use the fact a manifold can be embedded in some R¥. For example, let us
show that C' close embeddings are isotopic. Suppose f;: M — N are close embeddings. Embed N in
R*. By the tubular neighborhood theorem there is a smooth retraction r: U — N for some neighborhood
U of M in R*. (In fact for a canonical choice of tubular neighborhood, we could take r to be the closest
point map.) The map H(x,t) = r(tfi(x) + (1 —t)fo(z)) is an isotopy from fy to fi if fo and f; are C*
close enough. Another corollary of the embedding theorem is that there are no knots in R™ for n > 3,
any embedding S! — R” is isotopic to the standard S' < R? — R”. In fact we show that any two
homotopic embeddings f;: M™ — N™ are isotopic if n > 2m + 2 and M is compact. (It’s also true if M
is noncompact and the embeddings and homotopy are proper). This is easy for n > 2m+2, approximate
the homotopy by a smooth homotopy H: M x I — N so H(x,i) = f;(x), i = 0,1. Now approximate
H by an embedding G: M x I — N. Then H |y x; is isotopic to G|arxi, for i = 0,1 and G provides an
isotopy from G|arxo to G|arx1.- The argument for n = 2m + 2 is more delicate, and well worth doing. T
give two arguments, each of which illustrates a useful concept we will investigate later. One argument
considers the map h: M x I — N x I given by, h(z,t) = (H(x,t),t), and C' approximates it by an
embedding g: M X I — N X I 80 g|prxi = hlpxi for i =0,1. T m: N xI — T and p: N x I — N are
projections, then mg(z,t) is a C! approximation of the map (z,t) — t. Hence one can argue that there is
a diffeomorphism f: M x I — M x I so that wgf(z,t) =t (for example f(x,t) = (z, a(z,t)) where a(x, t)
is the unique s so wg(x,s) =t). Then gf embeds M x t to N x t so pgf: M x I — N is an isotopy from
fo to f1. A second argument notes that as on 9/29 we may approximate H by an immersion G which at
worst has transverse double points. These double points are all isolated so there are a finite number of
(24,t;) € M x I so that G embeds their complement. By perturbing G sligfhtly we may assume all ¢; are
distinct. Then G gives an isotopy since G embeds each M x t. This last argument uses the important
notion of transversality which is our next topic. Two embedded submanifolds M, P C N are transverse
if whenever ¢ € M NP then TMy+TPF,; = TN,. This imples that we can find local coordinates in which
M and P are both linear subspaces which intersect with minimal dimension m + p — n. Consequently
M N P is a submanifold. More generally if f: M — N and g: P — N are smooth maps we say f and g
are transverse if whenever f(x) = g(y) we have df,(T'M,) + dg,(T'P,) = T N¢(y). References [BJ, 51],
[H, 22], [Br, 84-86].

If f and g are smooth we can approximate g by a map ¢’ so that f and ¢’ are transverse. For example,
if M and P are embedded submanifolds, we may isotop P to be transverse to M. To prove map
transversality, consider the local form where N = R"™. We have a smooth map h: M x P — R™ given
by h(xz,y) = f(z) — g(y). If v is a regular value of h then f is transverse to g + v (i.e., g followed by
translation by v). The proof for general N is by the usual process of piecing together the relative version
of this local result, or by using the Baire category theorem (since the set of transverse ¢’s is open in the
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C! topology). If M and P are transverse embedded submanifolds of N, then M N P is an embedded
submanifold of N with dimension m+p—n. If f: M — N is transverse to an embedded submanifold P,
then f~1(P) is an embedded submanifold of M with dimension m + p — n. References [BJ, 145-151],
[H, 74-80], [Br, 114-118].

We want to show that if f and g are transverse and ¢’ is C' close to g, then somehow the situation has
not changed. In particular, if f and g are embeddings, then f(M) N g(P) is isotopic to f(M) N g¢'(P).
If f is an embedding, then g—!(f(M)) is isotopic in P to ¢’ '(f(M)). If g is an embedding, then
f~1(g(P)) is isotopic in M to f~'(¢’(P)). (In all cases assume M and P are compact and without
boundary to avoid more complicated statements). To show this we will first develop the technique of
integrating vector fields. A smooth vector field v on a manifold M is a smooth section v: M — T'(M).
By existence and uniqueness of ODEs there is a neighborhood U of M x0in M xR and a ¢:U — M
so that ¢(z,0) = x and dp(z,t)/dt = v(p(z,t)). Uniqueness of ODE solutions guarantees that in fact
o(p(x,t),s) = p(x,s +t). If M is compact without boundary (or v has compact support) we can take
U = M x R, but otherwise is is possible that ¢(x,t) “goes to infinity” as ¢t approaches some finite limit
a. We call ¢ the flow associated to v, or say we integrate v to get the flow . Some authors may call ¢
a partial flow if U #£ M x R. But in any case, we can take U as big as possible, so U Na x R = (a,, b,)
for some interval so lim; ., ¢(z,t) and lim;_.p, p(z,t) do not exist. Note ay(yty) = @z — to and
by(z,t) = bz — to. Note that if M x to C U then the map x — ¢(z,%) is a diffeomorphism with
inverse x — @(z, —tg). Note also that this diffeomorphism is isotopic to the identity by the isotopy
H:(z) = ¢(z,tty). It turns out vector fields are a great way to construct diffeomorphisms and isotopies.
If M is a manifold with boundary, there is a slight variation in the above discussion. You allow U not
to be open and then possibly U Nz x R = [ay,b,) or (ag,b,] or [a.,b;]. The first case, for example,
would correspond to ¢(z,a,) € OM. References [BJ, 74-85], [H, 149-151], [Br, 86-88]

Suppose @ is a compact embedded submanifold of M x I, OM = ¢, QN (M x {0,1}) = JQ. Suppose
also that the tangent space of @ is never horizontal, TQ,t) ¢ T M, x 0. Another way of saying this is
that the map 7: @Q — I given by 7(x,t) = t has no critical points. Define Q; C M by Q; xt = QN M x t.
Then Q) is isotopic to 1 in M. To prove this note there is a smooth vector field v on @ so dn(v) = 1.
(We only need construct v locally and then piece together with a partition of unity.) Integrate v to get a
flow . Then drp(z,t)/dt = dr(v) =1, so mp(x,t) = m(x)+t. We have an isotopy H;: Qo — M defined
by Hy(z) = pp((x,0),t), where p: M x I — M is projection. Note Hy(Qo) = Q; and H; ' : Q; — Qo is
H;'(z) = po((x,t), —t) so each H; is in fact an embedding. Note that in fact we get a bit more. We
can extend v to a vector field on M x I so that v = (0, 1) outside a compact set. Then integrating v
gives an isotopy of Hy: M — M so each each Hy is a diffeomorphism (sometimes called a diffeotopy or
more commonly an ambient isotopy). So not only is Q) isotopic to @1, but there is an ambient isotopy
of M which takes @y to @1. This proves the isotopy extension theorem, that any isotopy of embeddings
of a compact manifold can be extended to an ambient isotopy [BJ, 91], [H, 180].

Suppose g: P — N and that f: M — N is an embedding and f and g are transverse. Assume that either
P is compact, or that M is compact and g is proper. Also M, P, and N have empty boundary. Then
if ¢’ is C* close to g, we want to show that g~1(f(M)) is isotopic to ¢’ ~1(f(M)). First we show there
is a smooth homotopy G: P x I — N from g to g’ which is C* close to the map (x,t) — g(z). (Use the
construction given at the beginning of 10/1 for example). Then G is transverse to f, so Q = G~1(f(M))
is a submanifold of P x I. Now TQ = dG~(df (TM)) ~ dg~'(df (TM)) x T1 so TQ is never horizontal.
So by the theorem proven on 10/6, g~ 1(f(M)) is isotopic to ¢’~1(f(M)). In fact there is an ambient
isotopy of P which takes g~ 1(f(M)) to ¢’ *(f(M)). Similarly, suppose g: P — N is an embedding,
f:M — N, and f and g are transverse. Assume that either M is compact, or that P is compact and f
is proper. Also M, P, and N have empty boundary. Then if ¢’ is C* close to g, we want to show that
f~1(g(P)) is isotopic to f~1(g'(P)). As on 10/1, we have an isotopy G: P x I — N from g to ¢’ which
is C! close to the map (z,t) — g(x). Let G P x I — N x I be the map G'(x,t) = (G(x,t),t). Then
dG'" ~ dg x id so G’ is transverse to the map f x id: M x [ — N x I. Let Q = (f x id)"Y(G'(P x I)).
Then

TQ = (df x id) " (dG'(T(P x I))) = (df x id)"*(dg(TP) x TI) = df ~*(dg(TP)) x T
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so TQ is never horizontal. So f~1(g(P)) is isotopic to f~1(¢'(P)). At the end we briefly looked
at uniqueness of tubular neighborhoods and existence and uniqueness of collars on dM. A collar is
an embedding ¢:OM x [0,1) — M so that ¢(z,0) = z. Collars exist (they are really just a type
of tubular neighborhood so the tubular neighborhood existence proof works). Also collars and tubular
neighborhoods are unique up to isotopy. Any two collars are isotopic. For any two tubular neighborhoods
p,Y: E — N, there is an isomorphism h: E — E of the normal bundle so that ¢ and h are isotopic.
In fact h is the restriction of diy~1¢ to the zero section (note T'E|y is isomorphic to E). We proved
the local form of this where M = R™, E = R™ x R¥, ¢ tp(x,y) = (f(z,y),9(x,y)). We then use
the isotopy hi(z,y) = (f(z,ty),g(x,ty)/t). This has a smooth limit when ¢t = 0 (c.f., [BJ, 101,127],
[H, 112]). Note ho(z,y) = (z, A (y)) where A, is a nonsingular k x k& matrix depending on x. (Its i, j
component is 0g;/0y;(x,0).)

We looked last time at uniqueness of open tubular neighborhoods of M C N, but the isotopy might not
be able to be covered by an ambient isotopy of N. For example, R? and the open disc of radius 1 are
both tubular neighborhoods of the origin in R2. They are isotopic as embeddings but are not ambiently
isotopic. But if you put a Reimannian metric on the bundle E and look at the image of the unit disc
bundle (all vectors of length < 1) you get a closed tubular neighborhood. Then if M is compact, there
is an ambient isotopy of N which takes any closed tubular neighborhood to any other. To see this,
suppose ¢, ¥: E'— N are two tubular neighborhoods. We know there is an isotopy G; from ¢ to ¢h for
some bundle isomorphism h: E — E.. Let S C E be the unit sphere bundle, the set of vectors of length
1. There is a linear isotopy in E which takes h(S) to S (just take (v,t) — v/(1—t+t||v||)) so composing
this with G we get an isotopy of embeddings G} so G;,(S) = ¢(S) and G (S) = ¢(S). Now S is compact,
so by the isotopy extension theorem there is an ambient isotopy Hy: N — N so that Hyp(x) = Gi(z)
for all z € S, and Hy = identity. So Hi(p(S)) = (S). But then note that Hy(¢(D)) = (D) if D is
the unit disc bundle. So closed tubular neighborhoods of compact manifolds are unique up to ambient
isotopy. Likewise, closed collars ¢: 9M x [0,1] — M are unique up to ambient isotopy if M is compact.
We then started talking about differential forms.

James Crispino lectured on an introduction to differential forms, covering roughly page 260-264 of
Bredon.

James proves Stokes’ Theorem, roughly 265-269 of Bredon.

We looked at orientation, showing that an n dimensional manifold is orientable if and only if it has
a nowhere zero n form. We then looked at a construction which gives a Poincare dual of the first
Stiefel-Whitney class. Take a section 7 of A"(TN*) transverse to the zero section. Then 771(0) is
an n — 1 dimensional submanifold W of N. Transverse intersection with W gives a homomorphism
m1(N,x0) — Z/27Z (count the number of points of intersection of a curve with W). Curves mapping to
1 are curves along which N is not orientable. We can look at this as an element w; € H(N;Z/27Z)
called the first Stiefel-Whitney class. But the submanifold W is what is behind it. We then looked
at the oriented bordism group of a space ,(X). Elements are equivalence classes of continuous maps
f: N — X where N is a compact oriented n dimensional manifold without boundary. Two such maps
fi:N; = X, i = 0,1 are equivalent if there is a compact oriented manifold W so that OW is the disjoint
union of My (with the given orientation) and M; (with the opposite orientation).

More on ,(X). The group operation is disjoint union. The zero is either the empty manifold (if
you are comfortable with the empty manifold having any dimension) or a constant map of the sphere
S™ to X. This is a natural invariant of a space (called a functor), for example a map ¢: X — Y
induces a map g¢.: Q,(X) — Q,(Y) via composition. Homotopic ¢’s induce the same g.’s. We can
take the direct sum of Q,(X) for all n and get a graded group Q.(X). If X is a smooth manifold,
and w is a closed n form on X (closed means dw = 0), then Stokes’ theorem implies that [y f*(w)
is independent of the bordism class of f, so w gives a homomorphism from ,,(X) to R. (Note any
bordism class contains a smooth representative since we may approximate any map by a smooth map
homotopic to the original). Note also that if w is exact (which means w = dr for some n—1 form 7) then
Iy W) = [ydf*(r) = [55 f*(7) = 0 since ON is empty. So if we denote Hg(X) = closed n forms
on X modulo the subspace of exact n forms, we have a homomorphism HE(X) — Hom(,(X),R).
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10/22

10/24

10/27

Unfortunately Q,(X) is difficult to compute, even if X is a point. We're better off with an invariant
which is more complicated to define, but easier to compute and work with. Such an invariant is homology.
You can think of homology as like oriented bordism, except that you use simplicial complexes instead
of manifolds, and you can jazz things up by picking a coefficient group and assigning a group element
to each n simplex in the simplical complex. the end result is that for any space X and abelian group
G you get a natural graded group H,(X;G). If g: X — Y there is an induced map ¢g.: H.(X;G) —
H.(Y;G). Some results, Ho(X;G) = G* where / is the number of path components of X. If X is path
connected then Hy(X;G) = 7’ ® G where 7’ is the abelianization of 71 (X, zg). For now we wil focus
on G = R, then in fact each H,(X;R) is a real vector space. Then DeRham’s theorem says the map
H3(X) — Hom(H,(X;R),R) = H,(X;R)* is an isomorphism for any smooth manifold X.

We outlined a proof of DeRham’s theorem, that the integration map
H3(X) — Hom(Hi(X;R),R) = H(X;R)*

is an isomorphism for any k£ and smooth manifold X. The proof has these steps.

a) Show if DR is true for A, B, and AN B, it is true for AU B, where A and B are open.

b) Show DR is true for X = R".

c) Since S¥ x R"* = AU B where A and B are diffeomorphic to R” and A N B is diffeomorphic to
Sk=1 x R*~k+1 a) and b) and induction on k show that DR is true for S*¥ x R*~* (where S* is the k
sphere).

d) Using future work (Morse theory) show any n manifold X is the union of open sets A; so that each
A; is diffeomorphic to R, and each A; N (A; U A U...UA; 1) is diffeomorphic to S* x R"~* for some
k.

e) Then a), b), ¢), d) imply DR for all compact manifolds. The noncompact case follows with a little
more argument, using, as usual, compact bands going off to infinity.

A similar argument is given in [Br, 286-291].

We looked at more of the proof of deRham’s theorem. In particular we showed the sequence
0— QF(AUB) — Q*(A) @ Q*(B) - Q*(ANB) — 0
is exact which leads to a long exact sequence
- — H5(AUB) — HE(A) @ HE(B) — HE(ANB) — HEMY(AUB) — -

For amusement, we calculated the map HE(A N B) — HE™ (AU B) which is w — di) A w where
Y: AU B — [0,1] is any smooth map which is 0 on A — B and 1 on B — A. Let H*(X;R) = Hy(X;R)*,
called the real cohomology of X. There is a similar long exact sequence for cohomology, so by a standard
algebraic topology argument (called the 5 lemma) comparing these to sequences shows that if DeRham’s
theorem is true for A, B. and AN B then it is true for AU B. Next we showed that DeRham’s theorem
is true for R™, assuming a result we will prove 10/26, that homotopic maps induce the same map on
DeRham cohomology.

If F: M x [a,b] — N is a smooth homotopy, define ¢: Q¥(N) — QF=1(M) by

b
go(w)(vl,...,vk,l)z/ F*(w)(9/0t,v1,...,v5-1)dt

a

where ¢ is the coordinate in the [a,b] direction. This map is linear. I claim that dy + ¢d = fF — fi
where fi(x) = F(z,t). It suffices to prove this locally. (There are a few words to say about being local
in N, since the homotopy could go all over the place. But given a small compact neighborhood K of
a point in M, we may subdivide [a, ] into smaller intervals [t;,t;11], on each of which F(K X [t;,t;11])
remains in a chart. Adding up the result for each smaller interval, we get the desired result.) So we
may suppose that M and N are open subsets of R” and R”™ respectively.
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10/31

Let us temporarily introduce some notation. Let F; be the i-th coordinate of F. If I is a k-tuple of inte-
gers I = (i1,149,...,4x) let dey = day, Adxg, A . Adx;, , dFr = dF;, AdF;, A. . .AdF;, , and let 9/0x 1 be the

ordered k-tuple of vectors (0/0z;,,...,0/0x;,). Let I; be the k —1- tuple obtamgd by deleting i,;. Note
that F*(dx ;) = dFy. Also note that if w is a k form then dw(9/0x) = Zf;l(—l)j_la/axij (w(9/0x1,)).
Now suppose w € Q¥(N). We will show that (dp(w) + ¢(dw))(9/0z1) = (ffw — fiw)(d/dzr) which by
linearity implies that dy + ¢d = f; — fr. We have

k
w)(9/0xr) ==j£: )/ 710/0wi, (o(w)(0/0x1,))
/ Y 10/0, (F* (w)(9/0t,0/dx1,)) dt

We also have

b
¢(dw)(a/ax1)::J/ dF*(w)(0/0t,0/0x1) dt

/a/at F*()(9/0xr)) +Z 1)70/0x;, (F*(w)(8/0t,0/0x1,)) dt

Jj=1
Thus

b
(dw(w)4-¢%da0)(8/3x1)::J/ O/ Ot (F*(w)(9/Oxr)) di

= F*(w)(0/0x1)le = (fiw — faw)(0/0xr)

So we have shown dy + ¢d = f; — fi. Thus if w is a closed form representing a cohomology class in
H{(N), we have fi(w) — fi(w) = dp(w) + ¢(dw) = dp(w) and thus fy(w) and fi(w) represent the
same cohomologty class. So homotopic maps induce the same map on DeRham cohomology (since any
homotopy may be approximated by a smooth homotopy).

As an exercise, consider the map F(z,t) = tx from R™ x [0, 1] to R™. Show that ¢ is the map ¢ given
by Bredon on page 288.

References for the DeRham isomorphism being a ring homomorphism are [BT, 175] and [W, 214]
but it I forgo explaining this in class due to the machinery needed. Today we started characteristic
classes. Let G, be the Grassmanian of £ planes in n space. There is a canonical rank k& vector bundle
1 over G, 1 where the inverse image of a point ) € G, is the vector space (). If X is paracompact
then the set of rank bundles over X is in one to one correspondence with the set of homotopy classes
of X to Geo, [MS, 65]. The correspondence is that a map f: X — G, corresponds to the induced
bundle f*(n). We proved this if X is a CW complex with a finite number of cells, then bundles over X
correspond to homotopy classes of maps to G, i if n > k + dim X. The crucial Lemma to prove this is
that if V,,  is the Stiefel manifold of orthonormal sets of k vectors in R™, then any map of an m sphere
to V% is null homotopic, if m < n — k. Then we can construct the classifying map f cell by cell.

We looked at the decomposition of the Grassmanian G, into Schubert cells, each cell consisting of
row spaces of matrices whose row reduced echelon form has pivots in a particular place [MS, 73-81].
This represents G, as a CW complex, and in fact each of these cells is an independent generator of
H*(Gooi, Z/2Z). 1 stated without proof that as a ring, H*(Goo k, Z/2Z) is commutative and freely
generated by w; € H(Geo i, Z/2Z),i=0,...,k [MS, 82-88]. Thus we can get characteristic classes of
a bundle w;(€) = h*(w;) € H(X; Z/2Z) if € is induced by a map h: X — Goo . These are called the
Stiefel-Whitney classes. If we let w,(§) = wo(§) + w1 (&) + ... then w. (£ ® () = w.(§)w. () [MS, 92-93].
Since wp(€) = 1 always, w.(€) is invertible, so 1/w.(§) makes sense, e.g., 1/(1+a)=1—a+a®>—a+---
If M is a manifold, then we define w.(M) = w.(TM). If M C R" is a submanifold and v is its normal
bundle, then TM v is trivial so w, (v) = 1/w,(M). We computed w, (S™) = 1 and w, (RP") = (1+a)" !
where a € HY(RP"; Z/2Z) = Z/2Z is the generator [MS, 45-46].
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11/5

We start with another point of view of the Stiefel-Whitney classes, as obstructions to framing. Suppose
we have a rank k vector bundle £ whose base X is a CW complex. In particular X has closed subsets
Xo C X1 C Xo C --- so that X; is obtained from X;_; by gluing on some cells of dimension 7 and
X = J; Xi;. An / framing of the bundle is a choice of ¢ linearly independent sections (i.e., they are
linearly independent at each point of X). We saw on 10/29 that any map of the m sphere to V}, ¢ is null
homotopic if m < k— £. Consequently we can always construct an ¢ framing of §|x, ,. Our 10/29 proof
also showed that when trying to extend this framing to {|x,_,,, then for each k — £+ 1 we end up with
a mapping of its boundary k — ¢ sphere to a k — ¢ sphere which we would like to be null homotopic, but
might not be. We get a cohomology class in H*~“*1(X; Z/2Z) by mapping each k — £ + 1 cell to the
mod 2 degree of this map of spheres. This is wg_p4+1(£) [MS, 139-143]. In particular, if there is an ¢
framing of {|x,_,,, it is necessary that wy_¢41 = 0. For example, w;(§) is the obstruction to getting a
k-framing over X7, which is equivalent to an orientation of £. Also wy (&) is an obstruction to finding a
1 framing on Xy, i.e., a nowhere zero section on Xj. For example, if M is a manifold of dimension m
then w,, (M) is an obstruction to finding a nowhere zero vector field on M.

If £ is orientable then we can lift wy(€) to an integral cohomology class since our obstruction is a map
of S*¥~1 (the boundary of an attached k cell) to S*~! (the unit sphere in the vector bundle fibers).
Since the bundle is orientable, we have a preferred orientation of this destination S*~! and hence a
well defined integer degree of the map. hence we get a cohomology class e(¢) € H¥(X;Z) with Z
coefficients called the Euler class of the bundle. If M is a k dimensional oriented manifold without
boundary, then e(TM)([M]) = x(M) where [M] € Hy(M;Z) is the orientation class and x(M) is the
Euler characteristic of M [MS, 130].

If we let é’n,k be the two-fold orientation cover of Gy, j, then orientable bundles are classified by maps
to G’Do,k. This because a map h: X — G, lifts to a map to émk if and only if the induced bundle is
orientable.

There are more characteristic classes of oriented bundles but to define them we first look at characteristic
classes of complex bundles. Just as in the real case, complex bundles over a paracompact base space X
are in one to one correspondence with homotopy classes of maps of X to G (C) where Gy, 1(C) is the
Grassmannian of k dimensional complex linear subspaces of C". We can again decompose G, 1(C) into
Schubert cells. But now since all cells have even real dimension, the boundary maps in the cohomology
chain complex are all trivial so H (G, x(C);Z) is 0 for i odd and is Z% for i even where /; is the
number of Schubert cells of complex dimension /2. Similarly to the real case, this cohomology ring
is freely generated by classes ¢; € H* (G, 1(C); Z). If a complex bundle ¢ is represented by a map
h: X — Gy, 1 (C) then the Chern classes ¢;(£) are defined by ¢;(§) = h*(¢;). We have the usual properties
e (§@ C) = cx(§)ex(C), co(§) =1, and c.(f*(§)) = f*(ex(S))-

Given any real vector bundle £, we may complexify it to get a complex bundle ¢ ® C as follows. Take
EDE and define J:£DE - D E by J(xDy) = (—y) ®x. The points of £ ® C are £ ® £ and J gives
multiplication by v/—1. It turns out that the odd Chern classes of £ ® C all have order 2. We define the
Pontryagin classes of £ by p;(§) = (=1)%c; (€ ® C) € H¥(X; Z).

The ring H* (éoo’k; Z) has a bunch of complicated 2 torsion, but if we kill the 2 torsion, for example
by switching to real coefficients then the ring H *(éoo,k; R) is freely generated by the Pontryagin classes
P0,P1,---Pk—1)/2 if k is odd and by the Pontryagin classes po,p1,...pr/2—1 and the Euler class e if k
is even, and moreover e = p s2- Thus the Pontryagin classes and Euler class are the R characteristic
classes of orientable bundles (and in fact the G' characteristic classes for any integral domain G' without
2 torsion) [MS, 179].

Nicholas Long started talking about Morse theory. He defined a nondegenerate critical point of f: M —
R, a point p where df, = 0 and in local coordinates the Hessian matrix of second partials H =
(02 f/0x;0x;) is nonsingular. This matrix is symmetric, hence diagonalizable with all real eigenvalues.
The index of the critical point is the number of negative eigenvalues. Note that the second order taylor
series of f is f(x) ~ f(0)+zT Hx /2 if we choose our coordinates so the critical point p is at 0. In fact we
can extend H to be a matrix valued function H(z) so that we have equality f(z) = f(0) + 27 H(z)z /2,
or we could write this as f(z) = f(0) + 3270, Y270 wiwjhij(x) with hi; = hj;. One can diagonalize a
quadratic form by completing the square, doin%\ this with the above not quite quadratic form leads to
a change of variables so that f(y) = f(0) — >J;_; @7 + >/~ 1 27 where X is the index of the critical
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11/10

11/10

point. (Step one is to let 21 = x1 + w2h12(2)/h11(x) + -+ + Tphim(2)/h11(x), then hyp(x)z? absorbs
all the z1z; terms. Now let y; = \/|h11(x)|z1, then +y? absorbs all the zyz; terms.) So the whole
point is that at a nondegenerate critical point, the function f has a particularly simple form, a sum of
=+ squares of the variables. (Note, actually you can do this process at a degenerate critical point too in
a more careful way and get f(y) = f(0) — Z?:1 i+ 30+ g(Tug, ..., Tm) Where m — s the
number of 0 eigenvalues of H and g is totally degenerate, its second order Taylor series is 0.)

A Morse function is one whose critical points are all nondegenerate. Any function can be approximated
by a Morse function, in fact Morse functions are open and dense in the space of all functions. You
might be amused to fill in the details to the following proof of denseness. Any function M — R may
be approximated by a smooth function f, which by embedding M in R™ and taking the graph of f, we
may assume is a coordinate function for some fixed embedding of M in Euclidean space. So it suffices
to show that if M C R"™ is a submanifold, then for almost all linear functions L: R™ — R the restriction
L|ps is Morse. If v € R™, let L,(x) = v - x, then any linear function is some L,. Let

X ={(z,v) € M x R" | z is a critical point of L,|y} = {(z,v) | v L TM,}

Then X is an n dimensional manifold (in fact the normal bundle of M). Let h: X — R™ be the map
h(z,v) = v. Then a bit of calculation shows that critical points of h are exactly points (z,v) where L, |
has a degenerate critical point at z. Thus if v is a regular value of h then L,|ps is a Morse function.
A similar but easier calculation shows that if f:R™ — R is smooth, then for almost all v € R™ the
function z — f(z)+v-x is Morse. Thus maps which are Morse in a given compact piece of a coordinate
chart are open and dense in the space of all maps. The Baire category theorem then gives density.
References [Mi2, 4-8,32-38], [H, 143-148]. Milnor proves this differently using the distance function
to a point p rather than L,.

We then showed that if f: M — R is a proper Morse function (proper means the inverse image of any
compact set is compact) and there are no critical values in [a,b] then f~!([a,b]) is diffeomorphic to
f~1(a) x [0,1], and hence f~*((—oc,a]) is diffeomorphic to f~1((—o0,b]) and f~*((—oc,b]) deformation
retracts to f~1((—o0,a]). So despite James’s opinion, the only interesting stuff happens at critical
points. We started to look at f=*([c — €, c + €]) where ¢ is a critical value of f and there is only one
critical point in f~1(c) of index \.

Suppose f: M — R is a proper Morse function. After a small perturbation we may as well assume
each critical value is distinct, i.e., different critical points of f have different critical values. (You can
accomplish this by adding eu to f where u = 1 on a small neighborhood of a critical point and v = 0
outside a slightly larger neighborhood. If € is small enough you will add no new critical points but will
change the critical value by €.) Now if ¢ is a critical value of f for a critical point of index A and [c—¢, c+¢]
contains no other critical values, we showed that f~!((—o0,c+ ¢]) is obtained from f~1((—o0,c—€]) by
adding a A handle, in other words there is an embedding v: S~ x D™~* — f~1(c — ¢) and we obtain
1 ((—o0,c+¢]) from f~1((—o0,c — ¢€]) by gluing D* x D™~ with the map v.

There are a number of consequences of this. A manifold has the homotopy type of a CW complex with
one A cell for each critical point of index A. (With a little more work one can show that a manifold is a
CW complex, at least if it’s compact, but for all purposes I know of, homotopy type is good enough.)
But more strongly we see that any smooth manifold is a handlebody, i.e., it can be built up by attaching
handles as above. This has immense consequences, some of which we will see later. References [Mi2,
14-24], [H, 156-160]

We can compute the homology of M by taking the homology of the chain complex - -+ — C;y; — C; —
Ci_1 — - where C; = Z% and /; is the number of critical points of index i (if ¢; is finite). Next time
we will look at the map 0;: C; — C;_1 more carefully, it has a nice description in terms of a gradient-like
vector field for f.

We start by looking at handlebodies more carefully. Let S"~! and D™ denote the unit sphere and disc
in R™. If M is an m dimensional manifold with boundary, then to add a k£ handle to M we choose an
embedding v: S¥~1 x D% — 9M. We then take M’ = M U, D¥ x D™ we glue D* x D™ % to M
using v. To be pedantic we must also smooth out the resulting corner at v(S¥=1 x S™=F=1) but up to
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diffeomorphism there is only one way to do this. Up to diffeomorphism, the resulting M’ only depends
on the isotopy class of v, and in fact only depends on the istopy class of v|gk-1o and a trivialization of
its normal bundle. We see this by using collaring of 9M , the isotopy extension theorem, and uniqueness
of tubular neighborhoods.
We now look at when we can change the value of a critical point without changing anything else. In
particular, if p is a critical point for f: M — R and v is a gradient-like vector field for f with flow ¢,
then let D_(p) = {x € M | limy_.oo ¢(z,t) = p} and Dy(p) = {z € M | limy_._o ¢(z,t) = p}. If
f(p) = c then we know D_(p) C f~((—o0,c]) and D4 (p) C f~1([e,00)) since v(f) > 0. Moreover
D_(p) N f~([c — ¢, ¢]) is diffeomorphic to a closed disc of dimension A where ) is the index of p, if € is
small enough. We show the following theorem. If D_(p) N f~([a,c]) is diffeomorphic to a closed disc,
then there is a Morse function f’ so that

a) f' and f have the same critical points and the same indices.

b) f and f agree ouside an arbitrarily small neighborhood of D_(p) N f~1([a, c]).

) f'(p) =

d) vis st111 a gradient-like vector field for f.
To prove this, let D = D_(p) N f~%([a, c]). Take a standard chart v: U — R* x R™~* around p so that
in this chart fV_l(:,E, y) =c—|z|>+|y|? and UND_(p) = v~ (R* x 0). Using the flow ¢ we may enlarge
this chart to contain D so that v, (v) is still tangent to R* x 0. For a very small § > 0, choose smooth
a:R —[a—¢,0] and §:R — [0,1] so that 5(0) =1, B(t) =0for ¢t >4, #'(t) <0, a(0) =a—c, a(t) =0
fort >c—a+6,0<d(t) <1, and o and  are constant in a neighborhood of 0. Define f'(z) = f(z)
for x ¢ U and f'v=1(z,y) = c — |z|® + |y|* + a(|z]?)B(|y|?). Then f’ has the required properties.
item11/21 I am in the process of writing up what we have been doing. Meanwhile today we talked

about the degree of a map which is nicely explained in [Mil, 26-31]. We also talked about how to compute
homology of a relative CW complex, see [Br, 200-206].

Suggestions for further topics: pseudoholomorphic curves.
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