
Notes on the Cyclic Decomposition Theorem

We have been studying a general linear operator T : V → V on a finite dimensional vector space. We

showed using the Primary Decomposition Theorem (page 220) that V is a direct sum of invariant subspaces

Wi so that the restriction TWi
of T to each Wi has minimal polynomial (x − ci)

ei for some characteristic

value ci of T . Thus we have reduced to the case where T : V → V has minimal polynomial (x − c)e. Letting

N = T − cI we note that the minimal polynomial of N is then xe and hence N is what is called nilpotent.

We will study such a nilpotent N , and then infer properties of T by setting T = N + cI.

So from now on in these notes we will suppose that N : V → V is an operator with minimal polynomial

xe and V is finite dimensional. This is a special case of the general operator studied in 7.1 and 7.2 of the

book, but it is all we need to obtain the Jordan form in 7.3. In these notes I will also illustrate general

statements with their meanings for a particular example, N =











0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0











.

For any α ∈ V , I will say the depth of α is the smallest d so that Ndα = 0. Thus only α = 0 has

depth 0, nonzero vectors in NS(N) have depth 1, vectors in NS(N2)−NS(N) have depth 2 and so on. Since

Ne = 0 we know the depth is always ≤ e. Using the book’s terminology, α has depth d if and only if the

N -annihilator of α is xd (page 228). In particular, if g(N)α = 0 for some polynomial g we know that g is

divisible by xd. In our example, ε1 has depth 3 since Nε1 = ε2 6= 0, N2ε1 = ε3 6= 0, and N3ε1 = 0.

We let Z(α; N) denote the subspace of all vectors of the form g(N)α for g ∈ F[x] a polynomial. Since

Ndα = 0 for d the depth of α we know that g(N)α = h(N)α where h is the sum of the terms of g of

degree less than d. Hence Z(α; N) is the subspace spanned by α, Nα, N2α, . . . , Nd−1α. But I claim that

{α, Nα, N2α, . . . , Nd−1α} is linearly independent. To see this, set c0α+c1Nα+c2N
2α+· · ·+cd−1N

d−1α = 0.

Then g(N)α = 0 where g(x) = c0 + c1x + c2x
2 + · · ·+ cd−1x

d−1. But g(N)α = 0 implies g must be divisible

by xd so in fact g = 0 and thus all ci = 0.

So {α, Nα, N2α, . . . , Nd−1α} is a basis of Z(α; N). (this is all a special case of Thm 1, page 228). In

our example, suppose α = [1 2 3 4 5]T . Then Nα = [0 1 2 0 4]T , N2α = [0 0 1 0 0]T so Z(α; N) is the span

of α, [0 1 2 0 4]T , ε3. By Gaussian elimination, we know a vector [a1 a2 a3 a4 a5]
T is in Z(α; N) if and only

if a4 = 4a1 and a5 = −3a1 + 4a2.

Following the book, we say a subspace W ⊂ V is N -admissible if W is invariant under N and whenever

f ∈ F[x] is a polynomial and β ∈ V are chosen so that f(N)β ∈ W , there is a vector γ ∈ W so that

f(N)β = f(N)γ. Recall (page 201) that SN (β; W ) is the set of all polynomials f so that f(N)β ∈ W . So

we may rephrase the definition of N -admissible by saying that W is invariant under N and for all β ∈ V

and all f ∈ SN (β; W ), there is a γ ∈ W so that f(N)β = f(N)γ. Since the minimal polynomial xe is in

SN (β; W ) we know that the generator of the ideal SN(β; W ) must be xb for some b ≤ e. It then suffices to

show that there is a γ ∈ W so that N bβ = N bγ, for if f(N)β ∈ W we must have f(x) = g(x)xb for some

polynomial g and then f(N)β = g(N)N bβ = g(N)N bγ = f(N)γ. Let us call b the W -depth of β. So the

W -depth of β is the smallest b so that N bβ ∈ W .

So, we may finally rephrase the definition of N -admissible as follows. We say a subspace W ⊂ V is

N -admissible if W is invariant under N and for each β ∈ V there is a γ ∈ W so that N bβ = N bγ where b is

the W -depth of β.

Let us see whether or not W = Z([1 2 3 4 5]T ; N) is N -admissible. It is certainly invariant, since N of

any basis vector is either 0 or another basis vector. Now take any β = [b1 b2 b3 b4 b5]
T .

· If the W -depth of β is 0 then β = N0β ∈ W . We can take γ = β since N0β = β = γ = N0γ.

· If the W -depth of β is 1 then Nβ ∈ W . We have Nβ = [0 b1 b2 0 b4]
T so Nβ ∈ W if and only if

b4 = 4b1. We may let γ = b1[1 2 3 4 5]T + (b2 − 2b1)[0 1 2 0 4]T , then γ ∈ W and Nβ = Nγ.
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· Suppose the W -depth of β is greater than 1. Since N2β = [0 0 b1 0 0] ∈ W , the W -depth of β must

then be 2. Let γ = b1[1 2 3 4 5]T then γ ∈ W and N2β = N2γ.

So we see that W is N -admissible.

For a nonadmissible example, let W be the span of ε3. Then W is invariant under N since Nε3 = 0,

but if β = ε2 we have Nβ = ε3 ∈ W but there is no γ ∈ W so that Nβ = Nγ, since Nγ = 0 for all γ ∈ W .

Now instead of proving the Cyclic Decomposition Theorem all at once as is done in the text, we do just

one step and deduce the theorem by performing that one step as often as needed. This is the idea alluded

to at the bottom of page 232 of the text.

Here is the crucial step. Suppose W is an N -admissible subspace and W 6= V . Then there is an α ∈ V

so that:

a) W and Z(α; N) are independent.

b) W ⊕ Z(α; N) is N -admissible.

To get the Cyclic Decomposition Theorem (or rather, our special case of it), we apply the above step

many times. In particular, we start out by setting W0 = 0 and then perform the step, finding an α1 ∈ V

so that W1 = Z(α1; N) is N -admissible. If W1 6= V , we perform the step again, finding an α2 ∈ V so

that W1 and Z(α2; N) are independent and W2 = W1 ⊕ Z(α2; N) is N -admissible. If W2 6= V , we perform

the step again, finding an α3 ∈ V so that W2 and Z(α3; N) are independent and W3 = W2 ⊕ Z(α3; N) is

N -admissible. And so on. At the end, we have found α1, . . . , αk so that Z(α1; N), Z(α2; N), . . . , Z(αk; N)

are independent and V = Wk = Z(α1; N) ⊕ Z(α2; N) ⊕ · · · ⊕ Z(αk; N).

So it remains to prove the crucial step given above. So suppose W is an N -admissible subspace and

W 6= V . Choose a β ∈ V so that the W -depth of β is as large as possible. Call this W -depth b. Since

W is N -admissible, there is a γ ∈ W so that N bβ = N bγ. Let α = β − γ. Note that N bα = 0 ∈ W . If

N iα ∈ W for some i then N iβ = N iα + N iγ ∈ W + W = W so i ≥ b. Thus the depth of α is b and the

W -depth of α is also b. We must show W and Z(α; N) are independent, in other words W ∩Z(α; N) = {0}.

Suppose α′ ∈ W ∩ Z(α; N) then α′ ∈ W and α′ = g(N)α for some polynomial g. Then g ∈ SN (α; W )

and since SN (α; W ) is generated by xb we must have g(x) = f(x)xb for some polynomial f . But then

α′ = g(N)α = f(N)N bα = f(N)0 = 0, so we have W ∩ Z(α; N) = {0}.

Now let us show that W ⊕ Z(α; N) is N -admissible. First of all, W ⊕ Z(α; N) is invariant under N

since both W and Z(α; N) are invariant. Pick any δ ∈ V and let d be the W ⊕ Z(α; N)-depth of δ. So

Ndδ = δ1 +f(N)α where δ1 ∈ W and f ∈ F[x]. Since b was the largest possible W -depth we know N bδ ∈ W .

But N bδ = N b−dNdδ = N b−dδ1 + N b−df(N)α so we have N b−df(N)α = N bδ −N b−dδ1 ∈ W . Since W and

Z(α; N) are independent we must have N b−df(N)α = 0, so xb−df(x) ∈ SN (α; 0). But SN (α; 0) is generated

by xb since the depth of α is b. So xb−df(x) is divisible by xb which means f(x) = xdg(x) for some polynomial

g. Thus f(N)α = Ndg(N)α. Let δ′ = δ − g(N)α, then Ndδ′ = Ndδ −Ndg(N)α = Ndδ − f(N)α = δ1 ∈ W .

So there is a γ′ ∈ W so that Ndγ′ = δ1. Then γ′ + g(N)α ∈ W ⊕ Z(α; N) and Ndδ = Nd(γ′ + g(N)α) so

W ⊕ Z(α; N) is N -admissible.

Let us do all thus for our example. We start out with W0 = 0 and choose β1 with maximal depth, for

example β1 = [1 2 3 4 5]T which has depth 3. Since W0 = 0 we need no γ correction so we just let α1 = β1

and W1 is the span of α, Nα, N2α which we looked at above. Now we choose β2 with maximal W1 depth

which we saw above is 2. We also saw above that we can take any β2 = [b1 b2 b3 b4 b5]
T as long as b4 6= 4b1.

So what the heck, take β2 = [1 1 1 1 1]T . We saw above that N2β2 = N2[1 2 3 4 5]T and [1 2 3 4 5]T ∈ W1.

We now let α2 = [1 1 1 1 1]T − [1 2 3 4 5]T = [0 −1 −2 −3 −4]T . At this point F
5×1 = Z(α1; N)⊕Z(α2; N)

and we are done. Note that we have found a basis of F
5×1, namely α1, Nα1, N

2α1, α2, Nα2. You can verify

that the matrix of N with respect to this basis is N itself.

I deliberately chose odd looking vectors for β1 and β2. A nicer choice would be β1 = ε1 and β2 = ε4.

Then αi = βi.
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