More on Jordan Form

I will show uniqueness of the Jordan form of a linear operator in a more direct way than is done in the book. We suppose that $T: V \rightarrow V$ is a linear operator on a finite dimensional vector space V and the characteristic polynomial of T is $p(x)=\left(x-c_{1}\right)^{d_{1}} \cdots\left(x-c_{k}\right)^{d_{k}}$ and the minimal polynomial of T is $q(x)=\left(x-c_{1}\right)^{e_{1}} \cdots\left(x-c_{k}\right)^{e_{k}}$. We know already that $e_{i} \leq d_{i}$ for all i and we may also suppose that $e_{i}>0$ since p and q have the same roots by Thm 3, page 193.

Then we proved that there is a basis \mathcal{B} of V so that if $A=[T]_{\mathcal{B}}$ then $A=\left[\begin{array}{cccc}A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_{k}\end{array}\right]$ where each A_{i} is a $d_{i} \times d_{i}$ matrix and $A_{i}=\left[\begin{array}{cccc}J_{\ell_{i, 1} c_{i}} & 0 & \cdots & 0 \\ 0 & J_{\ell_{i, 2} c_{i}} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & J_{\ell_{i, n_{i}} c_{i}}\end{array}\right]$ where (using different notation from the book) $J_{\ell c}$ is an $\ell \times \ell$ Jordan block with c on the diagonal entries, 1 just below each diagonal entry and 0 everywhere else. Of course we have $\ell_{i, 1}+\ell_{i, 2}+\cdots+\ell_{i, n_{i}}=d_{i}$. We also may as well reorder the basis so that the Jordan blocks have nonincreasing size, so $\ell_{i, 1} \geq \ell_{i, 2} \geq \cdots \geq \ell_{i, n_{i}}$.

The uniqueness we will show is that the integers $\ell_{i, 1}, \ell_{i, 2}, \cdots, \ell_{i, n_{i}}$ are completely determined by T which means that T has only one possible Jordan form, up to shuffling the order of the Jordan blocks.

Right now I will just state the results, and will fill in the details later. Let $m_{i j}$ be the number of m so that $\ell_{i, m}=j$, in other words, the number of $j \times j$ Jordan blocks in A_{i}. It suffices to show that the numbers $m_{i j}$ are uniquely determined by T.
0) $\ell_{i, 1}=e_{i}$ so the exponent of $\left(x-c_{i}\right)$ in the minimal polynomial gives the size of the largest Jordan block in A_{i}.

1) n_{i} is the dimension of the space of characteristic vectors for the characteristic value c_{i}. In other words $n_{i}=\operatorname{dim} N S\left(T-c_{i} I\right)$.
2) $\operatorname{dim} N S\left(T-c_{i} I\right)^{2}=2 n_{i}-m_{i 1}$, so $m_{i 1}$ is determined by T.
3) $\operatorname{dim} N S\left(T-c_{i} I\right)^{3}=3 n_{i}-m_{i 2}-2 m_{i 1}$, so $m_{i 2}$ is determined by T.
4) In general, $\operatorname{dim} N S\left(T-c_{i} I\right)^{j+1}=(j+1) n_{i}-m_{i, j}-2 m_{i, j-1}-\cdots-j m_{i, 1}$, so $m_{i j}$ is determined by T for each j. Consequently the sizes of the Jordan blocks are uniquely determined by T.

Before proving these facts, we'll prove a couple simple lemmas:
Lemma 1. Suppose W_{1}, \ldots, W_{k} are independent subspaces of V and $U_{i} \subset W_{i}$ are subspaces. Then $U_{1}, U_{2}, \ldots, U_{k}$ are independent subspaces of V.
Proof: This is really trivial. Suppose $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=0$ and $\alpha_{i} \in U_{i}$. Then $\alpha_{i} \in W_{i}$ for all i, so each $\alpha_{i}=0$ by independence of the W_{i}.

Lemma 2. Suppose W_{1}, \ldots, W_{k} are independent subspaces of V such that $W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}=V$. Suppose also that each W_{i} is invariant under a linear operator $S: V \rightarrow V$. Let $S_{i}: W_{i} \rightarrow W_{i}$ be the restriction of S to W_{i}. Then $N S(S)=N S\left(S_{1}\right) \oplus N S\left(S_{2}\right) \oplus \cdots \oplus N S\left(S_{k}\right)$. In particular, the nullity of S is the sum of the nullities of the S_{i}.

Proof: Suppose $\beta \in N S(S)$, so $S \beta=0$. We may write $\beta=\beta_{1}+\beta_{2}+\cdots+\beta_{k}$ where $\beta_{i} \in W_{i}$. We have $0=S \beta=S \beta_{1}+S \beta_{2}+\cdots+S \beta_{k}=S_{1} \beta_{1}+S_{2} \beta_{2}+\cdots+S_{k} \beta_{k}$. Since $S_{i} \beta_{i} \in W_{i}$ we know by independence of the W_{i} that each $S_{i} \beta_{i}=0$. Thus $\beta_{i} \in N S\left(S_{i}\right)$ and we see that $\beta \in N S\left(S_{1}\right)+N S\left(S_{2}\right)+\cdots+N S\left(S_{k}\right)$. Conversely, if $\alpha \in N S\left(S_{1}\right)+N S\left(S_{2}\right)+\cdots+N S\left(S_{k}\right)$ then $\alpha=\alpha_{1}+\cdots+\alpha_{k}$ with $\alpha_{i} \in N S\left(S_{i}\right)$, but then $S \alpha=$ $S \alpha_{1}+\cdots+S \alpha_{k}=0+\cdots+0=0$ so $\alpha \in N S(S)$. So we have shown $N S(S)=N S\left(S_{1}\right)+N S\left(S_{2}\right)+\cdots+N S\left(S_{k}\right)$. But by Lemma 1, $N S\left(S_{1}\right)+N S\left(S_{2}\right)+\cdots+N S\left(S_{k}\right)=N S\left(S_{1}\right) \oplus N S\left(S_{2}\right) \oplus \cdots \oplus N S\left(S_{k}\right)$

To show 1)-4) above, we apply Lemma 2 to $S=\left(T-c_{i} I\right)^{\ell}$ using the decomposition into cyclic subspaces given by the Jordan form. Each of these cyclic subspaces has the form $Z\left(\alpha, N_{j}\right)$ where $\alpha \in V, N_{j}=\left(T-c_{j} I\right)$, $N_{j}^{m}(\alpha)=0$, and $N_{j}^{m-1} \neq 0$. In this case the cyclic subspace has dimension m and will correspond to one of the $m \times m$ Jordan blocks in A_{j}. First of all, if $j \neq i$ then the null space of the restriction of S to $Z\left(\alpha, N_{j}\right)$ is 0 . (The usual proof of this involves ideals, but there are many other proofs. I leave it as an exercise.) So we may
suppose $j=i$. Then $S=N_{i}^{\ell}$. So if $\ell \geq m$ we know the null space of the restriction of S to $Z\left(\alpha, N_{i}\right)$ is all of $Z\left(\alpha, N_{i}\right)$ and so has dimension m. If $\ell<m$ then the null space is the span of $N_{i}^{m-\ell} \alpha, N_{i}^{m-\ell+1} \alpha, \ldots, N_{i}^{m-1} \alpha$ and thus has dimension ℓ.

So apply all this when $\ell=1$ we see that the null space of the restriction of $T-c_{i} I$ to $Z\left(\alpha, N_{i}\right)$ always has dimension 1 , so by Lemma 2 the dimension of $N S\left(T-c_{i} I\right)$ is the number of such cyclic subspaces, which is the same as the number of Jordan blocks in A_{i}. So 1) is shown.

Letting $\ell=2$ we see that the null space of the restriction of $\left(T-c_{i} I\right)^{2}$ to $Z\left(\alpha, N_{i}\right)$ has dimension 2 if $m \geq 2$ and dimension 1 if $m=1$. So by Lemma 2 the dimension of $N S\left(T-c_{i} I\right)^{2}$ is two times the number of Jordan blocks in A_{i} which are 2×2 or larger, plus the number of 1×1 Jordan blocks in A_{i}. This is the same as twice the number of Jordan blocks in A_{i} minus the number of 1×1 Jordan blocks in A_{i}. So 2) is shown.

For general ℓ the dimension of $\left(T-c_{i} I\right)^{\ell}$ is ℓ times the number of Jordan blocks in A_{i} which are $\ell \times \ell$ or larger plus n times the number of $n \times n$ Jordan blocks in A_{i} for each $n<\ell$, so 4) (and 3)) are shown.

Here is an example. Suppose $T: V \rightarrow V$ has characteristic values 2 and 3 and no others. Suppose $(T-2 I)$ has nullity $3,(T-2 I)^{2}$ has nullity $5,(T-2 I)^{j}$ has nullity 6 for all $j>2,(T-3 I)$ has nullity 2, and $(T-3 I)^{j}$ has nullity 3 for all $j>1$. What is the Jordan form of T ? From 1) we know there are $n_{1}=3$ Jordan blocks for characteristic value 2 and $n_{2}=2$ Jordan blocks for characteristic value 3 . From 2) we know that $5=2 \cdot 3-m_{11}$ so $m_{11}=1$. Also $3=2 \cdot 2-m_{21}$ so $m_{21}=1$. So each characteristic value has a single 1×1 block. From 2) we know $6=3 \cdot 3-m_{12}-2 \cdot 1$ so $m_{12}=1$. Also $3=3 \cdot 2-m_{22}-2 \cdot 1$ so $m_{22}=1$. So each characteristic value has a single 2×2 block. From 3) we know $6=4 \cdot 3-m_{13}-2 \cdot 1-3 \cdot 1$ so $m_{13}=1$. So in the end, we see the Jordan blocks are one of each of $J_{12}, J_{22}, J_{32}, J_{13}, J_{23}$.

Note that $\operatorname{dim} N S\left(T-c_{i} I\right)^{j+1}-\operatorname{dim} N S\left(T-c_{i} I\right)^{j}=n_{i}-m_{i j}-m_{i, j-1}-\cdots-m_{i 1}=$ the number of Jordan blocks in A_{i} which are bigger than $j \times j$. So this difference in nullities cannot increase as j increases. Moreover, if this difference is ever 0 then we have reached the end, there are no Jordan blocks in A_{i} bigger than $j \times j$.

