
Unitary Diagonalization of Matrices
Here we take a different approach than Lang and diagonalize all matrices which can possibly be diago-

nalized using unitary matrices.

Theorem 1. The product of two unitary matrices is unitary.

Proof: Suppose Q and S are unitary, so Q−1 = Q∗ and S−1 = S∗. Then (QS)∗ = S∗Q∗ = S−1Q−1 =
(QS)−1 so QS is unitary

Theorem 2. (Schur Lemma) If A is any square complex matrix then there is an upper triangular complex
matrix U and a unitary matrix S so that A = SUS∗ = SUS−1.

Proof: Let q1 be an eigenvector of A, which we may suppose has unit length. By the Gram-Schmidt process
we may choose q′i so that {q1, q

′
2, . . . , q

′
n} is an orthonormal basis. Let Q0 = [q1q

′
2 · · · q′n], then Q0 is unitary

and Q∗
0AQ0 =

(
λ1 ∗
0 A1

)
for some (n−1)×(n−1) matrix A1. Likewise, we may find a unitary (n−1)×(n−1)

matrix Q1 so that Q∗
1A1Q1 =

[
λ2 ∗
0 A2

]
. Then if S1 = Q0

[
1 0
0 Q1

]
we have S∗

1AS1 =

λ1 ∗ ∗
0 λ2 ∗
0 0 A2

.

Note that S1 is unitary by Theorem 2. Now continue in this fashion, letting Sk = Sk−1

[
Ik 0
0 Qk

]
, and we

see that U = S∗
nASn is upper triangular. Letting S = Sn we see that A = SUS∗.

Finally we characterize which matrices can be diagonalized by a unitary matrix. We say a matrix A is
normal if AA∗ = A∗A.

Theorem 3. A matrix A is diagonalizable with a unitary matrix if and only if A is normal. In other words:
a) If A is normal there is a unitary matrix S so that S∗AS is diagonal.
b) If there is a unitary matrix S so that S∗AS is diagonal then A is normal.

Proof: Suppose A is normal. By Theorem 2 there is a unitary matrix S and an upper triangular U so that
A = SUS∗. Then

UU∗ = S∗AS(S∗AS)∗ = S∗ASS∗A∗S = S∗AA∗S = S∗A∗AS = S∗A∗SS∗AS = U∗U

But if we let uij denote the ij-th entry of U then the upper left entry of U∗U is u11u11 = |u11|2 but the
upper left entry of UU∗ is

u11u11 + u12u12 + · · · + u1nu1n = |u11|2 + |u12|2 + · · · + |u1n|2

Since this equals |u11|2 and all summands are nonnegative real numbers we must have u12 = u13 = · · · =
u1n = 0. Similarly, looking at the second diagonal entry we see that u2j = 0 for all j > 2. Continuing in
this way we see that U must be diagonal. So we have shown that if A is normal, then it is diagonalizable
with a unitary matrix.

Now suppose that A is any matrix so that there is a unitary matrix S so that S∗AS = D is diagonal.
Note DD∗ = D∗D. Then

AA∗ = SDS∗(SDS∗)∗ = SDS∗SD∗S∗ = SDD∗S∗ = SD∗DS∗ = SD∗S∗SDS∗ = A∗A

Consequently, A is normal.

Examples of normal matrices are Hermitian matrices (A = A∗), skew Hermitian matrices (A = −A∗)
and unitary matrices (A∗ = A−1) so all such matrices are diagonalizable.
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The Schur Lemma above needed to use a complex unitary matrix S. Note that A and U have the same
characteristic polynomial and hence the diagonal entries of U are the eigenvalues of A. So if A is a real
matrix and we want to find a real unitary matrix S so that tSAS is upper triangular, this is only possible
if all the eigenvalues of A are real. But a real matrix A often has nonreal eigenvalues. The following real
Schur Lemma shows what we can do in the real case.

But first a definition. For the purposes of these notes, we will say that a matrix U is 2× 2 block upper
triangular if the entries uij of U satisfy:
a) uij = 0 if i > j + 1.
b) If ui+1,i 6= 0, then the adjacent entries below the diagonal are 0, i.e., ui+2,i+1 = 0 and ui,i−1 = 0.

In other words a matrix U is 2 × 2 block upper triangular if we can write U in block form as:

U =


B11 B12 · · · B1,k−1 B1k

0 B22 · · · B2,k−1 B2k

...
...

. . .
...

...
0 0 · · · Bk−1,k−1 Bk−1,k

0 0 · · · 0 Bkk


where each Bij is a 2 × 2 or 1 × 1 matrix.

Theorem 4. (real Schur Lemma) If A is any square real matrix then there is a 2×2 block upper triangular
real matrix U and a real unitary matrix S so that A = SU tS = SUS−1. The eigenvalues of each 2× 2 block
on the diagonal are a complex conjugate pair of non real eigenvalues of A.

Proof: The proof is similar to that of theorem 2. If A has a real eigenvalue then we let q1 be a real
eigenvector and proceed as in theorem 2. If A has no real eigenvalues, let a + bi be an eigenvalue and let
u + iv be a nonzero eigenvector with u and v real. Then

Au + iAv = A(u + iv) = (a + bi)(u + iv) = au − bv + i(bu + av)

Equating real and imaginary parts, we see that Au = au − bv and Av = bu + av. Note that u 6= 0 since
if u = 0 we would have 0 = Au = au − bv = −bv so v = 0 since b 6= 0. Likewise v 6= 0. We know that
v and u are linearly independent because if v = cu then Au = au − bcu = (a − bc)u so A would have a
real eigenvalue a − bc. We now let {q1, q2} be an orthonormal basis for the subspace generated by u and v,
for example q1 = u/||u|| and q2 = (v− < v, q1 > q1)/||v− < v, q1 > q1||. Extend to an orthonormal basis

{q1, q2, . . . , qn} of Rn. Let Q0 = [q1q2 · · · qn], then Q0 is real unitary and Q∗
0AQ0 =

(
B1 C1

0 A1

)
for some

2× 2 matrix B1, some (n− 2)× (n− 2) matrix A1, and some 2× (n− 2) matrix C1. Now continue as in the
proof of theorem 2. It is not hard to see that the determinent of a block triangular matrix is the product of
the determinents of the diagonal blocks, and hence the characteristic polynomial of U is the product of the
characteristic polynomials of its diagonal blocks. Since U and A have the same characteristic polynomial,
each eigenvalue of a diagonal block of U is an eigenvalue of A. Eigenvalues of real matrices come in complex
conjugate pairs and the 2 × 2 blocks correspond to Note that if all the eigenvalues of A are real, then the
resulting U will be upper triangular.

If A is symmetric then, as shown in Lang, all its eigenvalues are real so we get tSAS = U is upper
triangular, so

tU = tStAS = tSAS = U

so U is diagonal.
If A is real unitary, then we saw that all eigenvalues λ have modulus 1, λλ = 1.
—More to come, but I’ll post this incomplete version now
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