Unitary Diagonalization of Matrices
Here we take a different approach than Lang and diagonalize all matrices which can possibly be diago-
nalized using unitary matrices.

Theorem 1. The product of two unitary matrices is unitary.

Proof: Suppose Q and S are unitary, so Q~! = Q* and S~! = S*. Then (QS)* = S*Q* = S~!Q~ ! =
(QS)~! so QS is unitary .

Theorem 2. (Schur Lemma) If A is any square complex matrix then there is an upper triangular complex
matrix U and a unitary matrix S so that A = SUS* = SUS™!.

Proof: Let ¢; be an eigenvector of A, which we may suppose has unit length. By the Gram-Schmidt process
we may choose ¢ so that {q1,¢5,...,q,} is an orthonormal basis. Let Qo = [q1¢5 - - - ¢}, ], then Q) is unitary
and Q5AQ = (i\)l 2 for some (n—1)x (n—1) matrix A;. Likewise, we may find a unitary (n—1)x(n—1)
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see that U = S} AS,, is upper triangular. Letting S = S,, we see that A = SUS*. m
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Note that S is unitary by Theorem 2. Now continue in this fashion, letting Sy = Si_1 [

Finally we characterize which matrices can be diagonalized by a unitary matrix. We say a matrix A is
normal if AA* = A*A.

Theorem 3. A matrix A is diagonalizable with a unitary matrix if and only if A is normal. In other words:
a) If A is normal there is a unitary matrix S so that S*AS is diagonal.
b) If there is a unitary matrix S so that S*AS is diagonal then A is normal.

Proof: Suppose A is normal. By Theorem 2 there is a unitary matrix S and an upper triangular U so that
A = SUS*. Then
UU* = S*AS(S*AS)" = S*ASS*A*S = S*AA*S = S*A*AS = STA*SS*AS =U*U

But if we let u;; denote the ij-th entry of U then the upper left entry of U*U is uii1u1; = |u11]? but the
upper left entry of UU* is

UL + w2tz + -+ Ui, = Juan ]+ Juael? + o+ Jug |

Since this equals |u11|? and all summands are nonnegative real numbers we must have w1y = u13 = --+ =
u1p, = 0. Similarly, looking at the second diagonal entry we see that up; = 0 for all j > 2. Continuing in
this way we see that U must be diagonal. So we have shown that if A is normal, then it is diagonalizable
with a unitary matrix.

Now suppose that A is any matrix so that there is a unitary matrix S so that S*AS = D is diagonal.
Note DD* = D*D. Then

AA* = SDS*(SDS*)* = SDS*SD*S* = SDD*S* = SD*DS* = SD*S*SDS* = A*A

Consequently, A is normal. n

Examples of normal matrices are Hermitian matrices (A = A*), skew Hermitian matrices (A = —A*)
and unitary matrices (A* = A~1) so all such matrices are diagonalizable.



The Schur Lemma above needed to use a complex unitary matrix S. Note that A and U have the same
characteristic polynomial and hence the diagonal entries of U are the eigenvalues of A. So if A is a real
matrix and we want to find a real unitary matrix S so that !SAS is upper triangular, this is only possible
if all the eigenvalues of A are real. But a real matrix A often has nonreal eigenvalues. The following real
Schur Lemma shows what we can do in the real case.

But first a definition. For the purposes of these notes, we will say that a matrix U is 2 x 2 block upper
triangular if the entries u;; of U satisfy:

a) ’U,ij:Oifi>j+1.
b) If u;41,; # 0, then the adjacent entries below the diagonal are 0, i.e., u;y2,41 =0 and u; ;—1 = 0.

In other words a matrix U is 2 x 2 block upper triangular if we can write U in block form as:

By By -+ Bip- By,
0 By -+ DByj By,
U= : S : :
0 0 -+ Byp_1k-1 Br-1x
0 0 e 0 B

where each B;; is a 2 X 2 or 1 x 1 matrix.

Theorem 4. (real Schur Lemma) If A is any square real matrix then there is a 2 X 2 block upper triangular
real matrix U and a real unitary matrix S so that A = SU 'S = SUS™!. The eigenvalues of each 2 x 2 block
on the diagonal are a complex conjugate pair of non real eigenvalues of A.

Proof: The proof is similar to that of theorem 2. If A has a real eigenvalue then we let ¢; be a real
eigenvector and proceed as in theorem 2. If A has no real eigenvalues, let a + bi be an eigenvalue and let
u 4 iv be a nonzero eigenvector with v and v real. Then

Au+iAv = A(u+iv) = (a + bi)(u + iv) = au — bv + i(bu + av)

Equating real and imaginary parts, we see that Au = au — bv and Av = bu + av. Note that u # 0 since
if u =0 we would have 0 = Au = au — bv = —bv so v = 0 since b # 0. Likewise v # 0. We know that
v and u are linearly independent because if v = cu then Au = au — beu = (a — be)u so A would have a
real eigenvalue a — be. We now let {q1,¢2} be an orthonormal basis for the subspace generated by u and v,
for example ¢; = u/||u|| and ¢2 = (v— < v,q¢1 > ¢1)/||[v— < v,q1 > q1||- Extend to an orthonormal basis
{q1,92,---,qn} of R™. Let Qo = [q1¢2 - - gn), then Qo is real unitary and Q§AQq = (B;)l ii) for some
2 x 2 matrix By, some (n —2) x (n — 2) matrix A, and some 2 X (n — 2) matrix C;. Now continue as in the
proof of theorem 2. It is not hard to see that the determinent of a block triangular matrix is the product of
the determinents of the diagonal blocks, and hence the characteristic polynomial of U is the product of the
characteristic polynomials of its diagonal blocks. Since U and A have the same characteristic polynomial,
each eigenvalue of a diagonal block of U is an eigenvalue of A. Eigenvalues of real matrices come in complex
conjugate pairs and the 2 x 2 blocks correspond to Note that if all the eigenvalues of A are real, then the
resulting U will be upper triangular. [

If A is symmetric then, as shown in Lang, all its eigenvalues are real so we get ‘SAS = U is upper

triangular, so
U =1S'AS ='SAS =U

so U is diagonal. B
If A is real unitary, then we saw that all eigenvalues A have modulus 1, A\ = 1.
—NMore to come, but I'll post this incomplete version now



