Find $\iint_{D} x^{2} d A$ where D is the region in the first quadrant bounded by the ellipse $(x / 2)^{2}+(y / 3)^{2}=1$ and the x and y axes.

Solution

This is similar to problem 11 in 5.8.
Let $u=x / 2$ and $v=y / 3$. Then $x=2 u, y=3 v$ so $\partial(x, y) / \partial(u, v)=6$. So $\iint_{D} x^{2} d A=\iint_{E}(2 u)^{2} 6 d u d v$ where E is the quarter circle bounded by $u^{2}+v^{2}=1$ and the u and v axes. It is best to change this to polar coordinates,

$$
\begin{gathered}
\iint_{E}(2 u)^{2} 6 d u d v=\iint_{E} 24 u^{2} d u d v=\int_{0}^{\pi / 2} \int_{0}^{1} 24 r^{3} \cos ^{2} \theta d r d \theta \\
\left.=\int_{0}^{\pi / 2} 6 r^{4} \cos ^{2} \theta\right]_{0}^{1} d \theta=\int_{0}^{\pi / 2} 6 \cos ^{2} \theta d \theta=\int_{0}^{\pi / 2} 3 \cos (2 \theta)+3 d \theta \\
=1.5 \sin (2 \theta)+3 \theta]_{0}^{\pi / 2}=3 \pi / 2
\end{gathered}
$$

