Let C be the curve parametrized by $\mathbf{x}(t)=t^{2} \mathbf{i}+\frac{4}{3} t^{3 / 2} \mathbf{j}+t \mathbf{k}$ for $1 \leq t \leq 4$. Find:
velocity \qquad
acceleration
speed \qquad (you would be wise to simplify this).
$a_{\text {norm }}$ \qquad
curvature \qquad

T
the length of C

Solution

Velocity $=x^{\prime}(t)=2 t \mathbf{i}+2 t^{1 / 2} \mathbf{j}+\mathbf{k}$.
Acceleration $=x^{\prime \prime}(t)=2 \mathbf{i}+t^{-1 / 2} \mathbf{j}$.
The speed $=\left\|x^{\prime}(t)\right\|=\sqrt{4 t^{2}+4 t+1}=2 t+1$.
$a_{\text {tang }}=2$, the derivative of the speed. So $a_{\text {norm }}=\sqrt{\|a\|^{2}-a_{\text {tan }}^{2}}=$
$\sqrt{2^{2}+\left(t^{-1 / 2}\right)^{2}-2^{2}}=t^{-1 / 2}$. You could also use the formula $\|v \times a\| /\|v\|=$ $\left\|t^{-1 / 2} \mathbf{i}+2 \mathbf{j}-2 t^{1 / 2} \mathbf{k}\right\| /(2 t+1)=\sqrt{1 / t+4+4 t} /(2 t+1)=t^{-1 / 2}$.

The curvature is $\kappa=a_{\text {norm }} /$ speed $^{2}=t^{-1 / 2}(2 t+1)^{-2}$.
The unit tangent vector is $\mathbf{T}=x^{\prime}(t) /\left\|x^{\prime}(t)\right\|=\frac{2 t}{2 t+1} \mathbf{i}+\frac{2 t^{1 / 2}}{2 t+1} \mathbf{j}+\frac{1}{2 t+1} \mathbf{k}$.
The length of C is the integral of the speed, $\left.\int_{1}^{4} 2 t+1 d t=t^{2}+t\right]_{1}^{4}=18$.

