11/22/06 Math 340 Quiz Name:

1. Find the integral $\int_C x \, dy$ where C is portion of the circle $(x-2)^2 + y^2 = 4$ in the first quadrant, oriented by starting at (0,0) and ending at (4,0).

You can parameterize C by $r(t) = (2 + 2\cos t)\mathbf{i} + 2\sin t\mathbf{j}, 0 \le t \le \pi$. This parameterization has the wrong orientation however, so

$$\int_C x \, dy = -\int_0^\pi (2 + 2\cos t) 2\cos t \, dt = -\int_0^\pi 4\cos t + 4\cos^2 t \, dt$$
$$= -\int_0^\pi 4\cos t + 2(1 + \cos(2t)) \, dt = -(4\sin t + 2t + \sin(2t))\Big]_0^\pi$$
$$= -(4\sin \pi + 2\pi + \sin(2\pi)) + (4\sin 0 + 0 + \sin(0)) = -2\pi$$

Here's another way to do this. Let C_1 be the line segment from (0,0) to (4,0), parameterized by $r_1(t) = 4t\mathbf{i}, 0 \le t \le 1$. Then $\int_{C_1} x \, dy = \int_0^1 4t \cdot 0 \, dt = 0$. But by Green's theorem, $\int_{C_1-C} x \, dy = \int \int_D 1 \, dA = (1/2)\pi 2^2 = 2\pi$ where D is the region enclosed by C and C_1 which is half a disc of radius 2. So $2\pi = \int_{C_1-C} x \, dy = \int_{C_1} x \, dy - \int_C x \, dy = 0 - \int_C x \, dy$. So $\int_C x \, dy = -2\pi$.

2. Is the vector field $(y^2, 2xy)$ conservative? Find $\int_C y^2 dx + 2xy dy$ where C is the curve which goes in a straight line from (1, 2) to (1, 0), then a quarter circle to (0, 1), then on the parabola $y = 1 - x^2$ to (2, -3).

If $\partial g/\partial x = y^2$ then $g(x, y) = xy^2 + C(y)$. Plug this in to $\partial g/\partial y = 2xy$ and we get 2xy + C'(y) = 2xy so C(y) is a constant. So $(y^2, 2xy) = \operatorname{grad}(xy^2)$ and is conservative. $\int_C y^2 dx + 2xy dy = g(2, -3) - g(1, 2) = 18 - 4 = 14$.