1. Find the integral $\int_{C} x d y$ where C is portion of the circle $(x-2)^{2}+y^{2}=4$ in the first quadrant, oriented by starting at $(0,0)$ and ending at $(4,0)$.

You can parameterize C by $r(t)=(2+2 \cos t) \mathbf{i}+2 \sin t \mathbf{j}, 0 \leq t \leq \pi$. This parameterization has the wrong orientation however, so

$$
\begin{aligned}
& \int_{C} x d y=-\int_{0}^{\pi}(2+2 \cos t) 2 \cos t d t=-\int_{0}^{\pi} 4 \cos t+4 \cos ^{2} t d t \\
& \left.=-\int_{0}^{\pi} 4 \cos t+2(1+\cos (2 t)) d t=-(4 \sin t+2 t+\sin (2 t))\right]_{0}^{\pi} \\
& =-(4 \sin \pi+2 \pi+\sin (2 \pi))+(4 \sin 0+0+\sin (0))=-2 \pi
\end{aligned}
$$

Here's another way to do this. Let C_{1} be the line segment from $(0,0)$ to $(4,0)$, parameterized by $r_{1}(t)=4 t \mathbf{i}, 0 \leq t \leq 1$. Then $\int_{C_{1}} x d y=\int_{0}^{1} 4 t \cdot 0 d t=$ 0 . But by Green's theorem, $\int_{C_{1}-C} x d y=\iint_{D} 1 d A=(1 / 2) \pi 2^{2}=2 \pi$ where D is the region enclosed by C and C_{1} which is half a disc of radius 2. So $2 \pi=\int_{C_{1}-C} x d y=\int_{C_{1}} x d y-\int_{C} x d y=0-\int_{C} x d y$. So $\int_{C} x d y=-2 \pi$.
2. Is the vector field $\left(y^{2}, 2 x y\right)$ conservative? Find $\int_{C} y^{2} d x+2 x y d y$ where C is the curve which goes in a straight line from $(1,2)$ to $(1,0)$, then a quarter circle to $(0,1)$, then on the parabola $y=1-x^{2}$ to $(2,-3)$.

If $\partial g / \partial x=y^{2}$ then $g(x, y)=x y^{2}+C(y)$. Plug this in to $\partial g / \partial y=2 x y$ and we get $2 x y+C^{\prime}(y)=2 x y$ so $C(y)$ is a constant. So $\left(y^{2}, 2 x y\right)=\operatorname{grad}\left(x y^{2}\right)$ and is conservative. $\int_{C} y^{2} d x+2 x y d y=g(2,-3)-g(1,2)=18-4=14$.

