div, grad, and curl as linear transformations

Let X be an open ${ }^{1}$ subset of \mathbb{R}^{n}. Let SF_{X} denote the vector space of real valued functions on X (i.e., scalar fields) and let VF_{X} denote the vector space of vector fields on X. Colley defines maps ${ }^{2}$ grad: $\mathrm{SF}_{X} \rightarrow$ VF_{X} and div: $\mathrm{VF}_{X} \rightarrow \mathrm{SF}_{X}$. If $n=3$ Colley also defines curl: $\mathrm{VF}_{X} \rightarrow \mathrm{VF}_{X}$.

The first thing to note is that div, grad, and curl are all linear transformations, since for example $\operatorname{grad}(f+g)=\operatorname{grad} f+\operatorname{grad} g$ and $\operatorname{grad}(c f)=c \operatorname{grad} f$. Recall from Colley that divcurl $=0$ and curlgrad $=0$. So we will look at a little linear algebra where the composition of linear transformations is 0 .

So suppose $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations and $S T=0$. It may help to think of T and S as matrices whose product is 0 , although this will not apply to the infinite dimensional examples we are studying here. Let $N S(S)=\{\alpha \in V \mid S \alpha=0\}$ be the null space of S which is a subspace of V. Let $T(U)=\{\alpha \in V \mid \alpha=T \beta$ for some $\beta \in U\}$ be the range of T, which is also a subspace of V. Since $S T=0$ we know that $T(U) \subset N S(S)$. If S and T were matrices, $N S(S)$ would be the null space of S and $T(U)$ would be the column space of T. So $T(U) \subset N S(S)$ is the same as saying that each column of T is in the null space of S which I hope you can convince yourself of. (Note $0=\operatorname{Col}_{i}(S T)=S \operatorname{Col}_{i} T$).

If $X \subset Y$ is a subspace then there is a vector space X / Y called the quotient space which I will not describe ${ }^{3}$. If X and Y are both subsets of some \mathbb{R}^{n}, you can think of X / Y as all vectors in X which are perpendicular to Y. It turns out that $\operatorname{dim}(X / Y)=k$ if and only if there are k linearly independent vectors $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ in X so that any vector α in X can be written uniquely as $\alpha=c_{1} \beta_{1}+c_{2} \beta_{2}+\cdots+c_{k} \beta_{k}+\beta$ where β is in Y. For example if $X=\mathbb{R}^{3}$ and Y is the plane with equation $x+2 y+z=0$, then $\operatorname{dim}(X / Y)=1$ since if for example $\beta_{1}=(1,0,0)$ then any vector (a, b, c) in \mathbb{R}^{3} can be written $(a, b, c)=(a+2 b+c) \beta_{1}+(-2 b-c, b, c)$ and $(-b-c, b, c)$ is in Y. Moreover there is no other way to write (a, b, c) as a multiple of β_{1} plus a vector in Y.

Now let us go back to our vector fields. We have vector spaces $H^{1}(X)=N S(\operatorname{curl}) / \operatorname{grad}\left(S F_{X}\right)$ and $H^{2}(X)=N S($ div $) / \operatorname{curl}\left(V F_{X}\right)$. A consequence of something called DeRham cohomology is that dim $\left(H^{1}(X)\right)$ is the number of 'tunnels' running through X and $\operatorname{dim}\left(H^{2}(X)\right)$ is the number of 'holes' in X. Note that $H^{1}(X)=0$ means that $N S(\operatorname{curl})=\operatorname{grad}\left(S F_{X}\right)$ which means that a vector field on X is conservative if and only if its curl is 0 . So if $X \subset \mathbb{R}^{3}$ has no tunnels then a vector field on X is conservative if and only if its curl is 0 .

We say that X is star shaped if there is a point $\alpha \in X$ so that for any $\beta \in X$ the entire line segment from α to β is in X. I will show that if X is star shaped and G is a vector field on X so curl $G=0$, then $G=\operatorname{grad} h$ for some h. In fact here is a formula for $h, h(x)=\int_{0}^{1} G(\alpha+t(x-\alpha)) \cdot(x-\alpha) d t=$ the work integral for G on the line segment from α to x. By the product rule and the ability to differentiate under the integral sign,

$$
\begin{gathered}
\partial h / \partial x_{i}=\int_{0}^{1} \partial(G(\alpha+t(x-\alpha)) \cdot(x-\alpha)) / \partial x_{i} d t \\
=\int_{0}^{1} \partial(G(\alpha+t(x-\alpha))) / \partial x_{i} \cdot(x-\alpha)+G(\alpha+t(x-\alpha)) \cdot \mathbf{e}_{i} d t \\
\left.=\int_{0}^{1} t \partial G / \partial x_{i}(\alpha+t(x-\alpha))\right) \cdot(x-\alpha)+G_{i}(\alpha+t(x-\alpha)) d t
\end{gathered}
$$

${ }^{1}$ With lots of hassle, one could do all this if X is not open, but it is not worth obscuring the main ideas to do so. By the way, I suggest you ignore the footnotes on your first reading. The main text is meant to give the essential ideas involved, sometimes telling a white lie, but this is all corrected in the footnotes.

2 This is not quite true. Since the maps involve derivatives, you need differentiability of the functions and vector fields. Here are some options on how to correct this:
a) restrict div, grad, and curl to the subspace of differentiable functions and vector fields, or
b) define SF_{X}^{k} and VF_{X}^{k} to be the subspaces of k times differentiable functions and vector fields and then, for example, define div: $\mathrm{VF}_{X}^{1} \rightarrow \mathrm{SF}_{X}^{0}$ and note that it takes VF_{X}^{k} to SF_{X}^{k-1} for all k, or
c) define SF_{X} and VF_{X} to be the vector spaces of infinitely differentiable scalar fields and vector fields.
${ }^{3}$ Okay, so I will describe it. Consider the equivalence relation on X where we say $x \sim x^{\prime}$ if $x-x^{\prime} \in Y$. The vectors in X / Y are equivalence classes under this equivalence relation. If $x \in X$, let $[x]$ denote its equivalence class in X / Y. We define $[x]+\left[x^{\prime}\right]=\left[x+x^{\prime}\right]$ and $c[x]=[c x]$.

But since curl $G=0$ we know $\partial G_{i} / \partial x_{j}=\partial G_{j} / \partial x_{i}$ so $\operatorname{grad} G_{i}=\partial G / \partial x_{i}$. So combining all this we get

$$
\begin{gathered}
\left.\partial h / \partial x_{i}=\int_{0}^{1} t \partial G / \partial x_{i}(\alpha+t(x-\alpha))\right) \cdot(x-\alpha)+G_{i}(\alpha+t(x-\alpha)) d t \\
=\int_{0}^{1} t \operatorname{grad} G_{i} \cdot(x-\alpha)+G_{i}(\alpha+t(x-\alpha)) d t \\
\left.=\int_{0}^{1} d t G_{i}(\alpha+t(x-\alpha)) / d t d t=t G_{i}(\alpha+t(x-\alpha))\right]_{0}^{1}=G_{i}(x)
\end{gathered}
$$

So in the end, $G=\operatorname{grad} h$.
Note that we did not use dimension 3 at all above, except to say curl $G=0$ implies $\partial G_{i} / \partial x_{j}=\partial G_{j} / \partial x_{i}$. So in fact it proves in all dimensions that if G is a vector field with star shaped domain, then G is conservative if and only if $\partial G_{i} / \partial x_{j}=\partial G_{j} / \partial x_{i}$ for all i and j.

Let us do an example where this does not hold. Suppose X is the region inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=1$. So X looks like a cored apple and it has one tunnel running through it, the (empty) core of the apple. Consider the vector field $F(x, y, z)=(-y \mathbf{i}+x \mathbf{j}) /\left(x^{2}+y^{2}\right)$. Then

$$
\begin{gathered}
\operatorname{curl} F(x, y, z)=\left(\partial\left(x\left(x^{2}+y^{2}\right)^{-1}\right) / \partial x-\partial\left(-y\left(x^{2}+y^{2}\right)^{-1}\right) / \partial y\right) \mathbf{k} \\
=\left(\left(x^{2}+y^{2}\right)^{-1}-x\left(x^{2}+y^{2}\right)^{-2}(2 x)+\left(x^{2}+y^{2}\right)^{-1}-y\left(x^{2}+y^{2}\right)^{-2}(2 y)\right) \mathbf{k}=0
\end{gathered}
$$

On the other hand, if $F=\operatorname{grad} g$ then $\partial g / \partial x=-y\left(x^{2}+y^{2}\right)^{-1}, \partial g / \partial y=x\left(x^{2}+y^{2}\right)^{-1}$, and $\partial g / \partial z=0$. The last equation says that g is a function of x and y alone and does not depend on z. Integrating the first equation we see that $g(x, y)=\tan ^{-1}(y / x)+C(y)$ for some function C. Plugging into the second equation we get $C(y)$ is a constant. So in polar coordinates, $g(x, y)=\theta$. The problem is that this is not continuous, as you go around X, g goes from 0 to 2π and then must immediately jump back from 2π to 0 . So F is not conservative, there is no differentiable function g so that $F=\operatorname{grad} g$.

On the other hand, I claim that if $G(x, y, z)$ is any vector field on X with $\operatorname{curl} G=0$ then there is a c and a $g(x, y, z)$ so that $G=c F+\operatorname{grad} g$, so $H^{1}(X)$ has dimension 1 . This may be easiest to see using the cylindrical coordinate version given on page 219 of the text. Note $F=(-r \sin \theta \mathbf{i}+r \cos \theta \mathbf{j}) / r^{2}=\mathbf{e}_{\theta} / r$. If $G=$ $G_{r} \mathbf{e}_{r}+G_{\theta} \mathbf{e}_{\theta}+G_{z} \mathbf{e}_{z}$ then curl $G=0$ means $\partial G_{z} / \partial \theta=\partial r G_{\theta} / \partial z, \partial G_{z} / \partial r=\partial G_{r} / \partial z$, and $\partial G_{r} / \partial \theta=\partial r G_{\theta} / \partial r$. We want to find c and $g(r, \theta, z)$ so that $G=c F+\operatorname{grad} g$ which means $G_{r}=\partial g / \partial r, G_{\theta}=c / r+(1 / r) \partial g / \partial \theta$, and $G_{z}=\partial g / \partial z$. Letting $\bar{G}=r G_{\theta}$ our equations become $\partial G_{z} / \partial \theta=\partial \bar{G} / \partial z, \partial G_{z} / \partial r=\partial G_{r} / \partial z, \partial G_{r} / \partial \theta=$ $\partial \bar{G} / \partial r, G_{r}=\partial g / \partial r, \bar{G}=c+\partial g / \partial \theta$, and $G_{z}=\partial g / \partial z$. In other words, the vector field $\left(G_{r}, \bar{G}, G_{z}\right)$ in the r, θ, z space has 0 curl. It is defined on the region $0 \leq \theta \leq 2 \pi, 1 \leq r \leq 3,-\sqrt{9-r^{2}} \leq Z \leq \sqrt{9-r^{2}}$ which is star shaped and hence we may find a function $h(r, \theta, z)$ so that $\partial h / \partial r=G_{r}, \partial h / \partial \theta=\bar{G}$, and $\partial h / \partial z=G_{z}$.

Consider $f(r, z)=h(r, 2 \pi, z)-h(r, 0, z)$. Then

$$
\partial f(r, z) / \partial r=\partial h(r, 2 \pi, z) / \partial r-\partial h(r, 0, z) / \partial r=G_{r}(r, 2 \pi, z)-G_{r}(r, 0, z)=0
$$

Similarly, $\partial f(r, z) / \partial z=0$. So $f(r, z)$ does not change when either r or z changes, so $f(r, z)$ is some constant d. Let $g(r, \theta, z)=h(r, \theta, z)-\frac{d}{2 \pi} \theta$. Then $g(r, 2 \pi, z)=g(r, 0, z)$ for all r and z so g is a well defined continuous function on X. Moreover $\operatorname{grad} g=G-\frac{d}{2 \pi} F$ which is what we wanted to show.

