Finding nice real matrix representations of real operators

Normal Operators: Let $T: V \to V$ be a normal operator on a real inner product space. We will pick an orthonormal basis $\mathcal{B} = \{\beta_1, \ldots, \beta_n\}$ so that $[T]_{\mathcal{B}}$ is as nice as possible. The general technique will be to pick any orthonormal basis \mathcal{A} . Then $[T]_{\mathcal{A}}$ is some real normal matrix \mathcal{A} . We then think of \mathcal{A} as being a complex normal matrix whose entries just happen to be real. Then there is an orthonormal basis in \mathbb{C}^n of characteristic vectors of A, say $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. For each j we have $A\alpha_j = c_j a_j$ for some characteristic value c_j . We may write $\alpha_j = \gamma_j + i\delta_j$ where γ_j and δ_j are real. After reordering, we may suppose that c_j is real for all $j \leq k$ and c_j has positive imaginary part for all $k < j \leq \ell$ and c_j has negative imaginary part for all $\ell < j < n$. Now:

- a) For any real matrix, normal or not, we can do the Gram-Schmidt procedure on the 2k real vectors $\{\gamma_1, \delta_1, \gamma_2, \delta_2, \dots, \gamma_k, \delta_k\}$ and obtain k orthonormal characteristic vectors $\{\beta_1, \dots, \beta_k\}$. In fact if we reorder so $c_1 \leq c_2 \leq \cdots \leq c_k$ then $T\beta_j = c_j\beta_j$.
- b) Since A is normal it turns out that $\{\sqrt{2\gamma_{k+1}}, \sqrt{2\gamma_{k+1}}, \sqrt{2\gamma_{k+2}}, \dots, \sqrt{2\gamma_{\ell}}, \sqrt{2\gamma_{\ell}}\}$ forms an orthonormal set which gives us $\{\beta_{k+1}, \ldots, \beta_{2\ell-k}\}.$
- c) $n = 2\ell k$ so we have found $\{\beta_1, \ldots, \beta_n\}$.
- d) If $c_j = a_j + ib_j$ then $T\beta_{2j-k} = a_j\beta_{2j-k} b_j\beta_{2j-k+1}$ and $T\beta_{2j-k+1} = b_j\beta_{2j-k} + a_j\beta_{2j-k+1}$ for all $k < j \leq \ell$. Thus $[T]_{\mathcal{B}}$ is block diagonal

where D is a $k \times k$ diagonal matrix with j-th diagonal entry c_j , and where B_j is the 2 × 2 matrix $\begin{bmatrix} a_{k+j} & b_{k+j} \\ -b_{k+j} & a_{k+j} \end{bmatrix}.$

Let us now see why all this works. First, if A is normal then characteristic vectors for different characteristic values must be orthogonal. To see this, suppose that $A\alpha = c\alpha$ and $A\beta = d\beta$ and $c \neq d$. Recall Theorem 19 on page 315 of H&K which implies $A^*\beta = d\beta$. Then

$$c(\alpha \mid \beta) = (c\alpha \mid \beta) = (A\alpha \mid \beta) = (\alpha \mid A^*\beta) = (\alpha \mid \bar{d}\beta) = d(\alpha \mid \beta)$$

so $(\alpha \mid \beta) = 0$.

Next note that if $A\alpha = c\alpha$ then

$$A\bar{\alpha} = \bar{A}\bar{\alpha} = \overline{A\alpha} = \overline{c\alpha} = \bar{c}\bar{\alpha}$$

so $\bar{\alpha}$ is a characteristic vector with characteristic value \bar{c} . In particular, if c is not real then $c \neq \bar{c}$ so $(\alpha \mid \bar{\alpha}) = 0.$

Now suppose that $A\alpha = c\alpha$, and $\alpha = \gamma + i\delta$, and c = a + bi where γ, δ, a , and b are real. Then $A\alpha = c\alpha$ so $A\gamma + iA\delta = (a+bi)\gamma + (-b+ai)\delta = a\gamma - b\delta + i(b\gamma + a\delta)$ so equating real and imaginary parts we have $A\gamma = a\gamma - b\delta$ and $A\delta = b\gamma + a\delta$.

If b = 0 then we have $A\gamma = a\gamma$ and $A\delta = a\delta$. Thus the real and imaginary parts of α are also characteristic vectors.

Now suppose that $b \neq 0$. Then $(\alpha \mid \bar{\alpha}) = 0$ so

$$0 = (\gamma + i\delta \mid \gamma - i\delta) = (\gamma \mid \gamma) - (\delta \mid \delta) + 2i(\gamma \mid \delta)$$

which means $(\gamma \mid \delta) = 0$ and $(\gamma \mid \gamma) = (\delta \mid \delta)$. So γ and δ are orthogonal and have the same length. Note also that $(\alpha \mid \alpha) = (\gamma \mid \gamma) + (\delta \mid \delta) + i(\delta \mid \gamma) - i(\gamma \mid \delta) = 2(\gamma \mid \gamma)$ So γ and δ have length 1/sqrt2 times the length of α . In particular if α has unit length then $\sqrt{2\gamma}, \sqrt{2\delta}$ is an orthonormal set.

These are the main ingredients which I will expand upon later but meanwhile here are some matlab calculations where we see all this in practice.

Start out with a random skew symmetric real matrix and find its eigenvectors and eigenvalues.

- >> A = rand(7,7);
- >> A = (A-A');
- >> [V,D] = eig(A);

Let us look at the characteristic values (the .' takes the transpose to make a row vector which prints out better than a column):

>> diag(D)	.'			
ans =					
Columns	1	through	4		
-0.0000	+	1.7173i	-0.0000 - 1.7173i	0 + 0.7516i	0 - 0.7516i
Columns	5	through	7		
0.0000			0.0000 + 0.3561i	0.0000 - 0.3561i	

We see they come in complex conjugate pairs except for the fifth one which is 0. Let's see if the fifth characteristic vector is real.

>> V(:,5)'							
ans =							
0.6173	-0.3724	-0.4482	-0.1224	0.4051	-0.0892	-0.3039	

Okay it is real. The first, third and sixth characteristic values have positive real part. So we can take the following change of basis matrix.

```
>> P = [V(:,5) sqrt(2)*real(V(:,1)) sqrt(2)*imag(V(:,1))];
>> P= [P sqrt(2)*real(V(:,3)) sqrt(2)*imag(V(:,3)) ];
>> P= [P sqrt(2)*real(V(:,6)) sqrt(2)*imag(V(:,6))];
>> % check to see that P is orthogonal since P'*P is close to the identity.
>> norm(P'*P-eye(7))
ans =
1.6709e-15
```

Now see that $P^{-1}AP = P^*AP$ is in block diagonal form.

>> P'*A*P							
ans =							
0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	
-0.0000	-0.0000	1.7173	0.0000	-0.0000	0.0000	0.0000	
0.0000	-1.7173	-0.0000	0.0000	0.0000	0.0000	-0.0000	
-0.0000	-0.0000	-0.0000	0.0000	0.7516	-0.0000	0	
0.0000	0.0000	-0.0000	-0.7516	0.0000	-0.0000	-0.0000	
-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.3561	
0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.3561	-0.0000	

Now let us look at an orthogonal example. Start with a random 5×5 orthogonal matrix, and check to see it is in fact orthogonal.

```
>> A = orth(rand(5,5));
>> norm(A*A'-eye(5))
ans =
9.1341e-16
```

Now find its characteristic values and characteristic vectors and check that the characteristic vectors for the real characteristic values are real.

```
>> [V D] = eig(A);
>> diag(D).'
ans =
1.0000 -0.8948 + 0.4466i -0.8948 - 0.4466i 0.1265 + 0.9920i 0.1265 - 0.9920i
>> norm(imag(V(:,1)))
ans =
0
```

Now form the orthogonal coordinate change P and check that P^*AP is in block diagonal form.

>> P=[V(:,1) sqrt(2)*real(V(:,2)) sqrt	(2)*imag(V(:	,2))];
>> P=[P	sqrt(2)*re	al(V(:,4))	sqrt(2)*i	mag(V(:,4))]	;
>> P'*A*	Р				
ans =					
1.0000	-0.0000	-0.0000	0.0000	0.0000	
0.0000	-0.8948	0.4466	0.0000	-0.0000	
-0.0000	-0.4466	-0.8948	0.0000	0.0000	
-0.0000	0.0000	-0.0000	0.1265	0.9920	
-0.0000	0.0000	0.0000	-0.9920	0.1265	

It is interesting to note what this means in the case of orthogonal matrices. So if A is an orthogonal $n \times n$ matrix then we may write $\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ where each W_i is invariant under A, the W_i are mutually perpendicular, A is the identity on W_1 , A is minus the identity on W_2 , and on W_j for j > 2 we have dim $W_j = 2$ and A acts by rotating by an angle θ_j on W_j .

Real Jordan form: Now suppose we have any old operator $T: V \to V$ on a finite dimensional vector space V over the reals. Our goal is to find a basis \mathcal{A} of V so that $[T]_{\mathcal{A}}$ has a nice form. For example, if the characteristic polynomial of T is a product of real linear factors, we can choose \mathcal{A} so that $[T]_{\mathcal{A}}$ is in Jordan form. But you cannot do this if the characteristic polynomial of T is not a product of real linear factors.

By taking any basis \mathcal{A}' of V and letting $A = [T]_{\mathcal{A}'}$ we may as well assume V is \mathbb{R}^n and T is given by multiplying by some $n \times n$ real matrix A. We now think of A as an operator on \mathbb{C}^n . Then there is a basis of \mathbb{C}^n which puts A in Jordan form. In particular, if the characteristic values of A are c_1, \ldots, c_m and the minimal polynomial of A is $(x - c_1)^{k_1} (x - c_2)^{k_2} \cdots (x - c_m)^{k_m}$ then if $W_j = NS(A - c_jI)^{k_j}$ then we have $\mathbb{C}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_m$. If we fix some j and let $c = c_j$ and N = A - cI, then we further decompose W_j as $W_j = Z(\alpha_1; A) \oplus Z(\alpha_2; A) \oplus \cdots \oplus Z(\alpha_k; A)$.

Recall that if c_j is real then the restriction of A to W_j can be put into Jordan form (using only real basis vectors) so we only need concern ourselves with the case where $c = c_j$ is not real.

The first thing to note is that if $\alpha \in W_j$ then $(A - \bar{c}I)^{k_j}\overline{\alpha} = (A - cI)^{k_j}\alpha = \bar{0} = 0$ so \bar{c} is also a characteristic value. If c is not real then after reordering we may as well suppose that $\bar{c} = c_{j+1}$. So we have $\overline{W_j} \subset W_{j+1}$ and likewise $\overline{W_{j+1}} \subset W_j$, so $\overline{W_j} = W_{j+1}$.

Now I claim that if c is not real and $\{\delta_1, \ldots, \delta_s\}$ is a basis of W_j and $\delta_\ell = \beta_\ell + i\gamma_\ell$ with β_ℓ and γ_ℓ real for all ℓ , then $\{\beta_1, \gamma_1, \beta_2, \gamma_2, \ldots, \beta_s, \delta_s\}$ is a basis of $W_j \oplus W_{j+1}$. To see this, take any $\alpha \in W_j \oplus W_{j+1}$. We may write $\alpha = \alpha_0 + \alpha_1$ where $\alpha_0 \in W_j$ and $\alpha_1 \in W_{j+1}$. Now $\overline{\alpha_1} \in W_j$ so we may write $\overline{\alpha_1} = d_1\delta_1 + \cdots + d_s\delta_s$ and $\alpha_0 = e_1\delta_1 + \ldots + e_s\delta_s$ so $\alpha = e_1(\beta_1 + i\gamma_1) + \overline{d_1}(\beta_1 - i\gamma_1) + \cdots + e_s(\beta_s + i\gamma_s) + \overline{d_s}(\beta_s - i\gamma_s)$ is a linear combination of the $\{\beta_1, \gamma_1, \beta_2, \gamma_2, \ldots, \beta_s, \delta_s\}$ so they span. On the other hand, if $0 = d_1\beta_1 + e_1\gamma_1 + \cdots + d_s\beta_s + e_s\gamma_s$. Let $\alpha_2 = (d_1 - ie_1)/2\delta_1 + (d_2 - ie_2)/2\delta_2 + \cdots + (d_s - ie_s)/2\delta_s \in W_j$ and $\alpha_3 = (d_1 + ie_1)/2\overline{\delta_1} + (d_2 - ie_2)/2\overline{\delta_2} + \cdots + (d_s - ie_s)/2\delta_s \in W_j$ and $\alpha_3 = (d_1 + ie_1)/2\overline{\delta_1} + (d_2 - ie_2)/2\overline{\delta_2} + \cdots + (d_s - ie_s)/2\overline{\delta_s} \in W_j$. But

$$(d_{\ell} - ie_{\ell})/2\delta_{\ell} + (d_{\ell} + ie_{\ell})/2\overline{\delta_{\ell}} = (d_{\ell} - ie_{\ell})/2(\beta_{\ell} + i\gamma_{\ell}) + (d_{\ell} + ie_{\ell})/2(\beta_{\ell} - i\gamma_{\ell})$$

$$= (1/2)(d_{\ell}\beta_{\ell} + id_{\ell}\gamma_{\ell} - ie_{\ell}\beta_{\ell} + e_{\ell}\gamma_{\ell} + d_{\ell}\beta_{\ell} - id_{\ell}\gamma_{\ell} + ie_{\ell}\beta_{\ell} + e_{\ell}\gamma_{\ell}) = d_{\ell}\beta_{\ell} + e_{\ell}\gamma_{\ell}$$

So we have $0 = \alpha_2 + \alpha_3$ which means $\alpha_2 = \alpha_3 = 0$ since W_j and W_{j+1} are independent. But then linear independence of $\delta_1, \ldots, \delta_s$ implies $d_\ell - ie_\ell = 0$ for all ℓ . Also $0 = \overline{2\alpha_3} = \sum \overline{d_\ell + ie_\ell} \delta_\ell$ so $d_\ell + ie_\ell = 0$ for all ℓ . Thus $d_\ell = e_\ell = 0$ for all ℓ and thus $\{\beta_1, \gamma_1, \beta_2, \gamma_2, \ldots, \beta_s, \delta_s\}$ is linearly independent.

Suppose the Jordan form of A has a $k \times k$ Jordan block with a nonreal diagonal entry c = a + bi. This Jordan block corresponds to a cyclic subspace $Z(\alpha; A)$ with basis $\{\alpha, N\alpha, \ldots, N^{k-1}\alpha\}$. Write $N^j \alpha = \beta_j + i\gamma_j$ where β_j and γ_j are real. Then

$$A\beta_j + iA\gamma_j = A(\beta_j + i\gamma_j) = (N + aI + biI)(\beta_j + i\gamma_j) = N(\beta_j + i\gamma_j) + (a + bi)(\beta_j + i\gamma_j)$$
$$= \beta_{i+1} + i\gamma_{i+1} + a\beta_i - b\gamma_j + i(a\gamma_i + b\beta_i)$$

So we get $A\beta_j = \beta_{j+1} + a\beta_j - b\gamma_j$ and $A\gamma_j = \gamma_{j+1} + a\gamma_j + b\beta_j$ So the matrix of the restriction of A to the subspace spanned by $\beta_0, \gamma_0, \beta_1, \gamma_1, \dots, \beta_{k-1}, \gamma_{k-1}$ using the basis $\{\beta_0, \gamma_0, \beta_1, \gamma_1, \dots, \beta_{k-1}, \gamma_{k-1}\}$ is the $\lceil B \ 0 \ \cdots \ 0 \ 0 \rceil$

$$2k \times 2k \text{ matrix } RJ_k(c) = \begin{bmatrix} B & 0 & \cdots & 0 & 0 \\ I & B & \cdots & 0 & 0 \\ 0 & I & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & B & 0 \\ 0 & 0 & \cdots & I & B \end{bmatrix} \text{ where } I \text{ is the } 2 \times 2 \text{ identity and } B = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}.$$

Thus in the end, for any linear operator $T: V \to V$ there is a basis \mathcal{A} of V so that $[T]_{\mathcal{A}}$ is block diagonal with each diagonal block either $J_k(c)$ for some real characteristic value c, or $RJ_k(c)$ for some non-real c.