Finding nice real matrix representations of real operators

Normal Operators: Let T:V — V be a normal operator on a real inner product space. We will pick
an orthonormal basis B = {f81,...,83,} so that [T]g is as nice as possible. The general technique will be
to pick any orthonormal basis \A. Then [T] 4 is some real normal matrix A. We then think of A as being
a complex normal matrix whose entries just happen to be real. Then there is an orthonormal basis in C"
of characteristic vectors of A, say {1, ae,...,a,}. For each j we have Aa; = c;a; for some characteristic
value ¢;. We may write a; = 7; +96; where ; and 0; are real. After reordering, we may suppose that c; is
real for all j < k and ¢; has positive imaginary part for all £ < j < £ and ¢; has negative imaginary part for
all £ < j <n. Now:

a) For any real matrix, normal or not, we can do the Gram-Schmidt procedure on the 2k real vectors
{71,01,72,02,-..,7k,0x} and obtain k orthonormal characteristic vectors {f1,...,0t}. In fact if we
reorder so ¢; < cg < -+ < ¢ then T8 = ¢;53;.

b) Since A is normal it turns out that {\/§%+1, \/§7k+1, \/5%4-2, eV 27, \/iw} forms an orthonormal
set which gives us {841, .-, 020—k}-

¢) n=2¢—k so we have found {f1,...,0,}.

d) If Cj = ay + ’Lbj then Tﬂgj,k = ajﬂgj,k — bjﬂgj,kJrl and TﬂQj,kJrl = bjﬁijk + CLjﬁQj,kJrl for all
k < j <{. Thus [T]g is block diagonal

D 0 --- 0
0 By ... 0
0 0 - By

where D is a k x k diagonal matrix with j-th diagonal entry c;, and where B; is the 2 x 2 matrix
[ Ut j bk+j]

—biyj  ap4j |
Let us now see why all this works. First, if A is normal then characteristic vectors for different char-

acteristic values must be orthogonal. To see this, suppose that Aa = ca and A = df3 and ¢ # d. Recall
Theorem 19 on page 315 of H&K which implies A*(3 = d3. Then

c(a|B) = (ca|B)=(Aa|p)=(a|A*B) = (a] df) = d(a|B)

so (a | B) =0.
Next note that if Ao = ca then
Aa = Aa = Aa =ta = ea
so @ is a characteristic vector with characteristic value ¢. In particular, if ¢ is not real then ¢ # ¢ so
(a] @) =0.

Now suppose that Aa = ca, and o = v+ 149, and ¢ = a + bi where ~, d, a, and b are real. Then Aa = ca
so Ay +iAd = (a + bi)y+ (—=b+ ai)d = ay — bd + i(by + ad) so equating real and imaginary parts we have
Av =avy—bd and Ad = by + ad.

If b = 0 then we have Ay = ay and A0 = ad. Thus the real and imaginary parts of a are also
characteristic vectors.

Now suppose that b # 0. Then (« | @) =0 so

0= (y+id|y—ib)=(y|v)—(0]6)+2i(v]9)
which means (y | d) =0 and (y|7) = (6 | §). So v and § are orthogonal and have the same length. Note
also that (a | a)=(y|7)+ (] +i(d]v) —i(y]|d) =2(y]~) So v and § have length 1/sqrt2 times the
length of . In particular if o has unit length then /27, /2§ is an orthonormal set.
These are the main ingredients which I will expand upon later but meanwhile here are some matlab
calculations where we see all this in practice.
Start out with a random skew symmetric real matrix and find its eigenvectors and eigenvalues.

>> A = rand(7,7);
>> A = (A-A?);
>> [V,D] = eig(A);




Let us look at the characteristic values (the .’ takes the transpose to make a row vector which prints
out better than a column):

>> diag(D) .’

ans =

Columns 1 through 4

-0.0000 + 1.7173i -0.0000 - 1.7173i 0 + 0.75161 0 - 0.75161
Columns 5 through 7

0.0000 0.0000 + 0.3561i  0.0000 - 0.35611

We see they come in complex conjugate pairs except for the fifth one which is 0. Let’s see if the fifth
characteristic vector is real.
>> V(:,5)’
ans =
0.6173 -0.3724 -0.4482 -0.1224 0.4051 -0.0892 -0.3039

Okay it is real. The first, third and sixth characteristic values have positive real part. So we can take
the following change of basis matrix.

>> P = [V(:,5) sqrt(2)*real(V(:,1)) sqrt(2)*imag(V(:,1))];

>> P= [P sqrt(2)*real(V(:,3)) sqrt(2)*imag(V(:,3)) 1;

>> P= [P sqrt(2)*real(V(:,6)) sqrt(2)*imag(V(:,6))];

>> Y, check to see that P is orthogonal since P’*P is close to the identity.
>> norm(P’*P-eye (7))

ans =

1.6709e-15

Now see that P~'AP = P*AP is in block diagonal form.

>> P2 xA*P

ans =

0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
-0.0000 -0.0000 1.7173 0.0000 -0.0000 0.0000 0.0000
0.0000 -1.7173 -0.0000 0.0000 0.0000 0.0000 -0.0000
-0.0000 -0.0000 -0.0000 0.0000 0.7516 -0.0000 0
0.0000 0.0000 -0.0000 -0.7516 0.0000 -0.0000 -0.0000
-0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.3561
0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.3561 -0.0000

Now let us look at an orthogonal example. Start with a random 5 x 5 orthogonal matrix, and check to
see it is in fact orthogonal.

>> A = orth(rand(5,5));
>> norm(A*A’-eye(5))
ans =

9.1341e-16

Now find its characteristic values and characteristic vectors and check that the characteristic vectors for
the real characteristic values are real.

>> [V D] = eig(A);

>> diag(D) .’

ans =

1.0000 -0.8948 + 0.44661i -0.8948 - 0.44661 0.1265 + 0.99201 0.1265 - 0.9920il
>> norm(imag(V(:,1)))

ans =

0




Now form the orthogonal coordinate change P and check that P*AP is in block diagonal form.

>> P=[V(:,1) sqrt(2)*real(V(:,2)) sqrt(2)*imag(V(:,2))];
>> P=[P sqrt(2)*real(V(:,4)) sqrt(2)*imag(V(:,4))];

>> P2 *xA%*P

ans =

1.0000 -0.0000 -0.0000 0.0000 0.0000

0.0000 -0.8948 0.4466 0.0000 -0.0000

-0.0000 -0.4466 -0.8948 0.0000 0.0000

-0.0000 0.0000 -0.0000 0.1265 0.9920

-0.0000 0.0000 0.0000 -0.9920 0.1265

It is interesting to note what this means in the case of orthogonal matrices. So if A is an orthogonal
n X n matrix then we may write R™ = W, @ W & - - - & Wy, where each W; is invariant under A, the W; are
mutually perpendicular, A is the identity on Wi, A is minus the identity on Ws, and on Wj for j > 2 we
have dim W; = 2 and A acts by rotating by an angle 6; on Wj.

Real Jordan form: Now suppose we have any old operator T:V — V on a finite dimensional vector
space V over the reals. Our goal is to find a basis A of V so that [T] 4 has a nice form. For example, if the
characteristic polynomial of T is a product of real linear factors, we can choose A so that [T] 4 is in Jordan
form. But you cannot do this if the characteristic polynomial of T is not a product of real linear factors.

By taking any basis A’ of V and letting A = [T] 4 we may as well assume V is R” and T is given by
multiplying by some n x n real matrix A. We now think of A as an operator on C™. Then there is a basis
of C™ which puts A in Jordan form. In particular, if the characteristic values of A are ci,..., ¢, and the
minimal polynomial of A is (z — ¢1)* (x — c2)* -+ (x — ¢;,)"™ then if W; = NS(A — ¢;I)* then we have
Cr=W1eWo@-- - ®W,,. If we fix some j and let ¢ = ¢; and N = A — cI, then we further decompose W;
as W; = Z(a1; A) @ Z(ag; A) @ - - @ Z(auy; A).

Recall that if ¢; is real then the restriction of A to W; can be put into Jordan form (using only real
basis vectors) so we only need concern ourselves with the case where ¢ = ¢; is not real.

The first thing to note is that if a € W, then (A — e)*a = (A—cl)*a = 0 = 0 so0 ¢ is also a
characteristic value. If c is not real then after reordering we may as well suppose that ¢ = ¢;41. So we have
Wj C Wj+1 and likewise Wj+1 C Wj, SO WJ = Wj+1.

Now I claim that if ¢ is not real and {d1,...,ds} is a basis of W; and d; = B¢+ i, with 8, and v, real for
all £, then {81,v, 082,72, ..., 0s,0s} is a basis of W; @ Wj41. To see this, take any o € W; & W, 1. We may
write o = ag + 1 where ag € W and oy € Wj4q. Now oy € W; so we may write oy = d101+ - - -+ ds6s and
Qo = €101+ ..+ esbs 50 a = e (B +iv1)+di(Br—iv1)+- - Fes(Bs+ivs) +ds(Bs —is) is a linear combination
of the {B1,71, 82,72, -, 0s,0s} so they span. On the other hand, if 0 = d1 51 +e1y1 + - -+ dsSs + esvs. Let
Qg = (dl — iel)/261 + (dz — ieg)/262 + -+ (ds — ies)/265 € W; and a3 = (dl +7;€1)/2a+ (dz — ieg)/2£+
R (ds - ies)/25_5 S Wj+1. But

(de —ieg) /200 + (do + ieg)/25_g = (d¢ —iep)/2(Be + ive) + (de + ieg) /2(Be — i7ve)

= (1/2)(deBe + ideye — ieefe + eove + defBe — ideye + ieefe + eeve) = defBe + erye

So we have 0 = ap + a3 which means az = ag = 0 since W; and Wj,; are independent. But then linear
independence of 1, ..., ds implies dy — iep = 0 for all £. Also 0 = 2a3 = Y dy + iesdp so dg + ie, = 0 for all
£. Thus dy = ey = 0 for all £ and thus {51, 71, 82,72, - - -, Os, s} is linearly independent.

Suppose the Jordan form of A has a k x k Jordan block with a nonreal diagonal entry ¢ = a + bi. This
Jordan block corresponds to a cyclic subspace Z(a; A) with basis {«, Na, . . ., Nk_la}. Write N7 = Bi+iv;
where [3; and +; are real. Then

ABj +iAy; = A(Bj +iv;) = (N +al +bil)(B; +iv5) = N(Bj +iv;) + (a + bi)(B; + i)

= Bi+1 + i1 +aB — by; +i(ay; + b5;)
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So we get AB; = Bjy1 + aB; — by; and Ay; = v;41 + ay; + bB; So the matrix of the restriction of A to
the Subspace Spa'nned by ﬁOa 0, 617 Yis- - 7/8k—17 Ve—1 U-Sing the basis {ﬁ07 0, 617 Yis- - 7/8k—17 ’Yk—l} is the

B 0 0 0

I B ... 0 0

o I ... 0 0 a b
2k x 2k matrix RJg(c) = S .. | wherelis the2><21dentityandB_{_b a}

0 0 - I B

Thus in the end, for any linear operator T:V — V there is a basis A of V so that [T] 4 is block diagonal
with each diagonal block either Ji(c) for some real characteristic value ¢, or RJ(c) for some non-real c.



