
Finding nice real matrix representations of real operators

Normal Operators: Let T : V → V be a normal operator on a real inner product space. We will pick
an orthonormal basis B = {β1, . . . , βn} so that [T ]B is as nice as possible. The general technique will be
to pick any orthonormal basis A. Then [T ]A is some real normal matrix A. We then think of A as being
a complex normal matrix whose entries just happen to be real. Then there is an orthonormal basis in Cn

of characteristic vectors of A, say {α1, α2, . . . , αn}. For each j we have Aαj = cjaj for some characteristic
value cj . We may write αj = γj + iδj where γj and δj are real. After reordering, we may suppose that cj is
real for all j ≤ k and cj has positive imaginary part for all k < j ≤ ℓ and cj has negative imaginary part for
all ℓ < j ≤ n. Now:
a) For any real matrix, normal or not, we can do the Gram-Schmidt procedure on the 2k real vectors

{γ1, δ1, γ2, δ2, . . . , γk, δk} and obtain k orthonormal characteristic vectors {β1, . . . , βk}. In fact if we
reorder so c1 ≤ c2 ≤ · · · ≤ ck then Tβj = cjβj .

b) Since A is normal it turns out that {
√

2γk+1,
√

2γk+1,
√

2γk+2, . . . ,
√

2γℓ,
√

2γℓ} forms an orthonormal
set which gives us {βk+1, . . . , β2ℓ−k}.

c) n = 2ℓ − k so we have found {β1, . . . , βn}.
d) If cj = aj + ibj then Tβ2j−k = ajβ2j−k − bjβ2j−k+1 and Tβ2j−k+1 = bjβ2j−k + ajβ2j−k+1 for all

k < j ≤ ℓ. Thus [T ]B is block diagonal








D 0 · · · 0
0 B1 . . . 0
...

...
...

0 0 · · · Bℓ−k









where D is a k × k diagonal matrix with j-th diagonal entry cj , and where Bj is the 2 × 2 matrix
[

ak+j bk+j

−bk+j ak+j

]

.

Let us now see why all this works. First, if A is normal then characteristic vectors for different char-
acteristic values must be orthogonal. To see this, suppose that Aα = cα and Aβ = dβ and c 6= d. Recall
Theorem 19 on page 315 of H&K which implies A∗β = d̄β. Then

c(α | β) = (cα | β) = (Aα | β) = (α | A∗β) = (α | d̄β) = d(α | β)

so (α | β) = 0.
Next note that if Aα = cα then

Aᾱ = Āᾱ = Aα = cα = c̄ᾱ

so ᾱ is a characteristic vector with characteristic value c̄. In particular, if c is not real then c 6= c̄ so
(α | ᾱ) = 0.

Now suppose that Aα = cα, and α = γ + iδ, and c = a + bi where γ, δ, a, and b are real. Then Aα = cα
so Aγ + iAδ = (a + bi)γ + (−b + ai)δ = aγ − bδ + i(bγ + aδ) so equating real and imaginary parts we have
Aγ = aγ − bδ and Aδ = bγ + aδ.

If b = 0 then we have Aγ = aγ and Aδ = aδ. Thus the real and imaginary parts of α are also
characteristic vectors.

Now suppose that b 6= 0. Then (α | ᾱ) = 0 so

0 = (γ + iδ | γ − iδ) = (γ | γ) − (δ | δ) + 2i(γ | δ)

which means (γ | δ) = 0 and (γ | γ) = (δ | δ). So γ and δ are orthogonal and have the same length. Note
also that (α | α) = (γ | γ) + (δ | δ) + i(δ | γ) − i(γ | δ) = 2(γ | γ) So γ and δ have length 1/sqrt2 times the
length of α. In particular if α has unit length then

√
2γ,

√
2δ is an orthonormal set.

These are the main ingredients which I will expand upon later but meanwhile here are some matlab
calculations where we see all this in practice.

Start out with a random skew symmetric real matrix and find its eigenvectors and eigenvalues.

>> A = rand(7,7);

>> A = (A-A’);

>> [V,D] = eig(A);
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Let us look at the characteristic values (the .’ takes the transpose to make a row vector which prints
out better than a column):

>> diag(D).’

ans =

Columns 1 through 4

-0.0000 + 1.7173i -0.0000 - 1.7173i 0 + 0.7516i 0 - 0.7516i

Columns 5 through 7

0.0000 0.0000 + 0.3561i 0.0000 - 0.3561i

We see they come in complex conjugate pairs except for the fifth one which is 0. Let’s see if the fifth
characteristic vector is real.

>> V(:,5)’

ans =

0.6173 -0.3724 -0.4482 -0.1224 0.4051 -0.0892 -0.3039

Okay it is real. The first, third and sixth characteristic values have positive real part. So we can take
the following change of basis matrix.

>> P = [V(:,5) sqrt(2)*real(V(:,1)) sqrt(2)*imag(V(:,1))];

>> P= [P sqrt(2)*real(V(:,3)) sqrt(2)*imag(V(:,3)) ];

>> P= [P sqrt(2)*real(V(:,6)) sqrt(2)*imag(V(:,6))];

>> % check to see that P is orthogonal since P’*P is close to the identity.

>> norm(P’*P-eye(7))

ans =

1.6709e-15

Now see that P−1AP = P ∗AP is in block diagonal form.

>> P’*A*P

ans =

0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000

-0.0000 -0.0000 1.7173 0.0000 -0.0000 0.0000 0.0000

0.0000 -1.7173 -0.0000 0.0000 0.0000 0.0000 -0.0000

-0.0000 -0.0000 -0.0000 0.0000 0.7516 -0.0000 0

0.0000 0.0000 -0.0000 -0.7516 0.0000 -0.0000 -0.0000

-0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.3561

0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.3561 -0.0000

Now let us look at an orthogonal example. Start with a random 5× 5 orthogonal matrix, and check to
see it is in fact orthogonal.

>> A = orth(rand(5,5));

>> norm(A*A’-eye(5))

ans =

9.1341e-16

Now find its characteristic values and characteristic vectors and check that the characteristic vectors for
the real characteristic values are real.

>> [V D] = eig(A);

>> diag(D).’

ans =

1.0000 -0.8948 + 0.4466i -0.8948 - 0.4466i 0.1265 + 0.9920i 0.1265 - 0.9920i

>> norm(imag(V(:,1)))

ans =

0
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Now form the orthogonal coordinate change P and check that P ∗AP is in block diagonal form.

>> P=[V(:,1) sqrt(2)*real(V(:,2)) sqrt(2)*imag(V(:,2))];

>> P=[P sqrt(2)*real(V(:,4)) sqrt(2)*imag(V(:,4))];

>> P’*A*P

ans =

1.0000 -0.0000 -0.0000 0.0000 0.0000

0.0000 -0.8948 0.4466 0.0000 -0.0000

-0.0000 -0.4466 -0.8948 0.0000 0.0000

-0.0000 0.0000 -0.0000 0.1265 0.9920

-0.0000 0.0000 0.0000 -0.9920 0.1265

It is interesting to note what this means in the case of orthogonal matrices. So if A is an orthogonal
n× n matrix then we may write Rn = W1 ⊕ W2 ⊕ · · · ⊕ Wk where each Wi is invariant under A, the Wi are
mutually perpendicular, A is the identity on W1, A is minus the identity on W2, and on Wj for j > 2 we
have dim Wj = 2 and A acts by rotating by an angle θj on Wj .

Real Jordan form: Now suppose we have any old operator T : V → V on a finite dimensional vector
space V over the reals. Our goal is to find a basis A of V so that [T ]A has a nice form. For example, if the
characteristic polynomial of T is a product of real linear factors, we can choose A so that [T ]A is in Jordan
form. But you cannot do this if the characteristic polynomial of T is not a product of real linear factors.

By taking any basis A′ of V and letting A = [T ]A′ we may as well assume V is Rn and T is given by
multiplying by some n × n real matrix A. We now think of A as an operator on Cn. Then there is a basis
of C

n which puts A in Jordan form. In particular, if the characteristic values of A are c1, . . . , cm and the
minimal polynomial of A is (x − c1)

k1(x − c2)
k2 · · · (x − cm)km then if Wj = NS(A − cjI)kj then we have

Cn = W1 ⊕W2 ⊕ · · · ⊕Wm. If we fix some j and let c = cj and N = A− cI, then we further decompose Wj

as Wj = Z(α1; A) ⊕ Z(α2; A) ⊕ · · · ⊕ Z(αk; A).
Recall that if cj is real then the restriction of A to Wj can be put into Jordan form (using only real

basis vectors) so we only need concern ourselves with the case where c = cj is not real.

The first thing to note is that if α ∈ Wj then (A − c̄I)kj α = (A − cI)kj α = 0̄ = 0 so c̄ is also a
characteristic value. If c is not real then after reordering we may as well suppose that c̄ = cj+1. So we have
Wj ⊂ Wj+1 and likewise Wj+1 ⊂ Wj , so Wj = Wj+1.

Now I claim that if c is not real and {δ1, . . . , δs} is a basis of Wj and δℓ = βℓ + iγℓ with βℓ and γℓ real for
all ℓ, then {β1, γ1, β2, γ2, . . . , βs, δs} is a basis of Wj ⊕Wj+1. To see this, take any α ∈ Wj ⊕Wj+1. We may
write α = α0 +α1 where α0 ∈ Wj and α1 ∈ Wj+1. Now α1 ∈ Wj so we may write α1 = d1δ1 + · · ·+dsδs and
α0 = e1δ1+. . .+esδs so α = e1(β1+iγ1)+d1(β1−iγ1)+· · ·+es(βs+iγs)+ds(βs−iγs) is a linear combination
of the {β1, γ1, β2, γ2, . . . , βs, δs} so they span. On the other hand, if 0 = d1β1 + e1γ1 + · · ·+ dsβs + esγs. Let
α2 = (d1 − ie1)/2δ1 + (d2 − ie2)/2δ2 + · · ·+ (ds − ies)/2δs ∈ Wj and α3 = (d1 + ie1)/2δ1 + (d2 − ie2)/2δ2 +
· · · + (ds − ies)/2δs ∈ Wj+1. But

(dℓ − ieℓ)/2δℓ + (dℓ + ieℓ)/2δℓ = (dℓ − ieℓ)/2(βℓ + iγℓ) + (dℓ + ieℓ)/2(βℓ − iγℓ)

= (1/2)(dℓβℓ + idℓγℓ − ieℓβℓ + eℓγℓ + dℓβℓ − idℓγℓ + ieℓβℓ + eℓγℓ) = dℓβℓ + eℓγℓ

So we have 0 = α2 + α3 which means α2 = α3 = 0 since Wj and Wj+1 are independent. But then linear
independence of δ1, . . . , δs implies dℓ − ieℓ = 0 for all ℓ. Also 0 = 2α3 =

∑

dℓ + ieℓδℓ so dℓ + ieℓ = 0 for all
ℓ. Thus dℓ = eℓ = 0 for all ℓ and thus {β1, γ1, β2, γ2, . . . , βs, δs} is linearly independent.

Suppose the Jordan form of A has a k × k Jordan block with a nonreal diagonal entry c = a + bi. This
Jordan block corresponds to a cyclic subspace Z(α; A) with basis {α, Nα, . . . , Nk−1α}. Write N jα = βj +iγj

where βj and γj are real. Then

Aβj + iAγj = A(βj + iγj) = (N + aI + biI)(βj + iγj) = N(βj + iγj) + (a + bi)(βj + iγj)

= βj+1 + iγj+1 + aβj − bγj + i(aγj + bβj)
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So we get Aβj = βj+1 + aβj − bγj and Aγj = γj+1 + aγj + bβj So the matrix of the restriction of A to
the subspace spanned by β0, γ0, β1, γ1, . . . , βk−1, γk−1 using the basis {β0, γ0, β1, γ1, . . . , βk−1, γk−1} is the

2k × 2k matrix RJk(c) =

















B 0 · · · 0 0
I B . . . 0 0
0 I . . . 0 0
...

...
...

...
0 0 · · · B 0
0 0 · · · I B

















where I is the 2 × 2 identity and B =

[

a b
−b a

]

.

Thus in the end, for any linear operator T : V → V there is a basis A of V so that [T ]A is block diagonal
with each diagonal block either Jk(c) for some real characteristic value c, or RJk(c) for some non-real c.
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