Finding nice real matrix representations of real operators

Normal Operators: Let $T: V \rightarrow V$ be a normal operator on a real inner product space. We will pick an orthonormal basis $\mathcal{B}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ so that $[T]_{\mathcal{B}}$ is as nice as possible. The general technique will be to pick any orthonormal basis \mathcal{A}. Then $[T]_{\mathcal{A}}$ is some real normal matrix A. We then think of A as being a complex normal matrix whose entries just happen to be real. Then there is an orthonormal basis in \mathbb{C}^{n} of characteristic vectors of A, say $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. For each j we have $A \alpha_{j}=c_{j} a_{j}$ for some characteristic value c_{j}. We may write $\alpha_{j}=\gamma_{j}+i \delta_{j}$ where γ_{j} and δ_{j} are real. After reordering, we may suppose that c_{j} is real for all $j \leq k$ and c_{j} has positive imaginary part for all $k<j \leq \ell$ and c_{j} has negative imaginary part for all $\ell<j \leq n$. Now:
a) For any real matrix, normal or not, we can do the Gram-Schmidt procedure on the $2 k$ real vectors $\left\{\gamma_{1}, \delta_{1}, \gamma_{2}, \delta_{2}, \ldots, \gamma_{k}, \delta_{k}\right\}$ and obtain k orthonormal characteristic vectors $\left\{\beta_{1}, \ldots, \beta_{k}\right\}$. In fact if we reorder so $c_{1} \leq c_{2} \leq \cdots \leq c_{k}$ then $T \beta_{j}=c_{j} \beta_{j}$.
b) Since A is normal it turns out that $\left\{\sqrt{2} \gamma_{k+1}, \sqrt{2} \gamma_{k+1}, \sqrt{2} \gamma_{k+2}, \ldots, \sqrt{2} \gamma_{\ell}, \sqrt{2} \gamma_{\ell}\right\}$ forms an orthonormal set which gives us $\left\{\beta_{k+1}, \ldots, \beta_{2 \ell-k}\right\}$.
c) $n=2 \ell-k$ so we have found $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$.
d) If $c_{j}=a_{j}+i b_{j}$ then $T \beta_{2 j-k}=a_{j} \beta_{2 j-k}-b_{j} \beta_{2 j-k+1}$ and $T \beta_{2 j-k+1}=b_{j} \beta_{2 j-k}+a_{j} \beta_{2 j-k+1}$ for all $k<j \leq \ell$. Thus $[T]_{\mathcal{B}}$ is block diagonal

$$
\left[\begin{array}{cccc}
D & 0 & \cdots & 0 \\
0 & B_{1} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & B_{\ell-k}
\end{array}\right]
$$

where D is a $k \times k$ diagonal matrix with j-th diagonal entry c_{j}, and where B_{j} is the 2×2 matrix $\left[\begin{array}{cc}a_{k+j} & b_{k+j} \\ -b_{k+j} & a_{k+j}\end{array}\right]$.
Let us now see why all this works. First, if A is normal then characteristic vectors for different characteristic values must be orthogonal. To see this, suppose that $A \alpha=c \alpha$ and $A \beta=d \beta$ and $c \neq d$. Recall Theorem 19 on page 315 of H\&K which implies $A^{*} \beta=\bar{d} \beta$. Then

$$
c(\alpha \mid \beta)=(c \alpha \mid \beta)=(A \alpha \mid \beta)=\left(\alpha \mid A^{*} \beta\right)=(\alpha \mid \bar{d} \beta)=d(\alpha \mid \beta)
$$

so $(\alpha \mid \beta)=0$.
Next note that if $A \alpha=c \alpha$ then

$$
A \bar{\alpha}=\bar{A} \bar{\alpha}=\overline{A \alpha}=\overline{c \alpha}=\bar{c} \bar{\alpha}
$$

so $\bar{\alpha}$ is a characteristic vector with characteristic value \bar{c}. In particular, if c is not real then $c \neq \bar{c}$ so $(\alpha \mid \bar{\alpha})=0$.

Now suppose that $A \alpha=c \alpha$, and $\alpha=\gamma+i \delta$, and $c=a+b i$ where γ, δ, a, and b are real. Then $A \alpha=c \alpha$ so $A \gamma+i A \delta=(a+b i) \gamma+(-b+a i) \delta=a \gamma-b \delta+i(b \gamma+a \delta)$ so equating real and imaginary parts we have $A \gamma=a \gamma-b \delta$ and $A \delta=b \gamma+a \delta$.

If $b=0$ then we have $A \gamma=a \gamma$ and $A \delta=a \delta$. Thus the real and imaginary parts of α are also characteristic vectors.

Now suppose that $b \neq 0$. Then $(\alpha \mid \bar{\alpha})=0$ so

$$
0=(\gamma+i \delta \mid \gamma-i \delta)=(\gamma \mid \gamma)-(\delta \mid \delta)+2 i(\gamma \mid \delta)
$$

which means $(\gamma \mid \delta)=0$ and $(\gamma \mid \gamma)=(\delta \mid \delta)$. So γ and δ are orthogonal and have the same length. Note also that $(\alpha \mid \alpha)=(\gamma \mid \gamma)+(\delta \mid \delta)+i(\delta \mid \gamma)-i(\gamma \mid \delta)=2(\gamma \mid \gamma)$ So γ and δ have length $1 /$ sqrt2 times the length of α. In particular if α has unit length then $\sqrt{2} \gamma, \sqrt{2} \delta$ is an orthonormal set.

These are the main ingredients which I will expand upon later but meanwhile here are some matlab calculations where we see all this in practice.

Start out with a random skew symmetric real matrix and find its eigenvectors and eigenvalues.

```
>> A = rand(7,7);
>> A = (A-A');
>> [V,D] = eig(A);
```

Let us look at the characteristic values (the .' takes the transpose to make a row vector which prints out better than a column):

```
>> diag(D).'
ans =
Columns 1 through 4
-0.0000 + 1.7173i -0.0000-1.7173i 0 + 0.7516i 0 - 0.7516i
Columns 5 through 7
0.0000 0.0000 + 0.3561i 0.0000-0.3561i
```

We see they come in complex conjugate pairs except for the fifth one which is 0 . Let's see if the fifth characteristic vector is real.

```
>> V(:,5)'
ans =
0.6173 -0.3724 -0.4482 -0.1224 0.4051 -0.0892 -0.3039
```

Okay it is real. The first, third and sixth characteristic values have positive real part. So we can take the following change of basis matrix.

```
>> P = [V(:,5) sqrt(2)*real(V(:,1)) sqrt(2)*imag(V(:,1))];
>> P= [P sqrt(2)*real(V(:,3)) sqrt(2)*imag(V(:,3)) ];
>> P= [P sqrt(2)*real(V(:,6)) sqrt(2)*imag(V(:,6))];
>> % check to see that P is orthogonal since P'*P is close to the identity.
>> norm(P'*P-eye(7))
ans =
1.6709e-15
```

Now see that $P^{-1} A P=P^{*} A P$ is in block diagonal form.

$\gg P^{\prime} * A * P$						
ans $=$						
0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000
-0.0000	-0.0000	1.7173	0.0000	-0.0000	0.0000	0.0000
0.0000	-1.7173	-0.0000	0.0000	0.0000	0.0000	-0.0000
-0.0000	-0.0000	-0.0000	0.0000	0.7516	-0.0000	0
0.0000	0.0000	-0.0000	-0.7516	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.3561
0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.3561	-0.0000

Now let us look at an orthogonal example. Start with a random 5×5 orthogonal matrix, and check to see it is in fact orthogonal.

```
>> A = orth(rand(5,5));
>> norm(A*A'-eye(5))
ans =
9.1341e-16
```

Now find its characteristic values and characteristic vectors and check that the characteristic vectors for the real characteristic values are real.

```
>> [V D] = eig(A);
>> diag(D).'
ans =
1.0000 -0.8948 + 0.4466i -0.8948-0.4466i 0.1265 + 0.9920i 0.1265 - 0.9920i
>> norm(imag(V(:,1)))
ans =
0
```

Now form the orthogonal coordinate change P and check that $P^{*} A P$ is in block diagonal form.

```
>> P=[V(:,1) sqrt(2)*real(V(:,2)) sqrt(2)*imag(V(:,2))];
>> P=[P sqrt(2)*real(V(:,4)) sqrt(2)*imag(V(:,4))];
>> P'*A*P
ans =
\begin{tabular}{lrrrr}
1.0000 & -0.0000 & -0.0000 & 0.0000 & \multicolumn{1}{c}{0.0000} \\
0.0000 & -0.8948 & 0.4466 & \multicolumn{1}{c}{0.0000} & \multicolumn{1}{c}{-0.0000} \\
-0.0000 & -0.4466 & -0.8948 & 0.0000 & 0.0000 \\
-0.0000 & 0.0000 & -0.0000 & 0.1265 & 0.9920 \\
-0.0000 & 0.0000 & 0.0000 & -0.9920 & 0.1265
\end{tabular}
```

It is interesting to note what this means in the case of orthogonal matrices. So if A is an orthogonal $n \times n$ matrix then we may write $\mathbb{R}^{n}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$ where each W_{i} is invariant under A, the W_{i} are mutually perpendicular, A is the identity on W_{1}, A is minus the identity on W_{2}, and on W_{j} for $j>2$ we have $\operatorname{dim} W_{j}=2$ and A acts by rotating by an angle θ_{j} on W_{j}.

Real Jordan form: Now suppose we have any old operator $T: V \rightarrow V$ on a finite dimensional vector space V over the reals. Our goal is to find a basis \mathcal{A} of V so that $[T]_{\mathcal{A}}$ has a nice form. For example, if the characteristic polynomial of T is a product of real linear factors, we can choose \mathcal{A} so that $[T]_{\mathcal{A}}$ is in Jordan form. But you cannot do this if the characteristic polynomial of T is not a product of real linear factors.

By taking any basis \mathcal{A}^{\prime} of V and letting $A=[T]_{\mathcal{A}^{\prime}}$ we may as well assume V is \mathbb{R}^{n} and T is given by multiplying by some $n \times n$ real matrix A. We now think of A as an operator on \mathbb{C}^{n}. Then there is a basis of \mathbb{C}^{n} which puts A in Jordan form. In particular, if the characteristic values of A are c_{1}, \ldots, c_{m} and the minimal polynomial of A is $\left(x-c_{1}\right)^{k_{1}}\left(x-c_{2}\right)^{k_{2}} \cdots\left(x-c_{m}\right)^{k_{m}}$ then if $W_{j}=N S\left(A-c_{j} I\right)^{k_{j}}$ then we have $\mathbb{C}^{n}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{m}$. If we fix some j and let $c=c_{j}$ and $N=A-c I$, then we further decompose W_{j} as $W_{j}=Z\left(\alpha_{1} ; A\right) \oplus Z\left(\alpha_{2} ; A\right) \oplus \cdots \oplus Z\left(\alpha_{k} ; A\right)$.

Recall that if c_{j} is real then the restriction of A to W_{j} can be put into Jordan form (using only real basis vectors) so we only need concern ourselves with the case where $c=c_{j}$ is not real.

The first thing to note is that if $\alpha \in W_{j}$ then $(A-\bar{c} I)^{k_{j}} \bar{\alpha}=\overline{(A-c I)^{k_{j} \alpha}}=\overline{0}=0$ so \bar{c} is also a
 $\overline{W_{j}} \subset W_{j+1}$ and likewise $\overline{W_{j+1}} \subset W_{j}$, so $\overline{W_{j}}=W_{j+1}$.

Now I claim that if c is not real and $\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ is a basis of W_{j} and $\delta_{\ell}=\beta_{\ell}+i \gamma_{\ell}$ with β_{ℓ} and γ_{ℓ} real for all ℓ, then $\left\{\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}, \ldots, \beta_{s}, \delta_{s}\right\}$ is a basis of $W_{j} \oplus W_{j+1}$. To see this, take any $\alpha \in W_{j} \oplus W_{j+1}$. We may write $\alpha=\alpha_{0}+\alpha_{1}$ where $\alpha_{0} \in W_{j}$ and $\alpha_{1} \in W_{j+1}$. Now $\overline{\alpha_{1}} \in W_{j}$ so we may write $\overline{\alpha_{1}}=d_{1} \delta_{1}+\cdots+d_{s} \delta_{s}$ and $\alpha_{0}=e_{1} \delta_{1}+\ldots+e_{s} \delta_{s}$ so $\alpha=e_{1}\left(\beta_{1}+i \gamma_{1}\right)+\overline{d_{1}}\left(\beta_{1}-i \gamma_{1}\right)+\cdots+e_{s}\left(\beta_{s}+i \gamma_{s}\right)+\overline{d_{s}}\left(\beta_{s}-i \gamma_{s}\right)$ is a linear combination of the $\left\{\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}, \ldots, \beta_{s}, \delta_{s}\right\}$ so they span. On the other hand, if $0=d_{1} \beta_{1}+e_{1} \gamma_{1}+\cdots+d_{s} \beta_{s}+e_{s} \gamma_{s}$. Let $\alpha_{2}=\left(d_{1}-i e_{1}\right) / 2 \delta_{1}+\left(d_{2}-i e_{2}\right) / 2 \delta_{2}+\cdots+\left(d_{s}-i e_{s}\right) / 2 \delta_{s} \in W_{j}$ and $\alpha_{3}=\left(d_{1}+i e_{1}\right) / 2 \overline{\delta_{1}}+\left(d_{2}-i e_{2}\right) / 2 \overline{\delta_{2}}+$ $\cdots+\left(d_{s}-i e_{s}\right) / 2 \overline{\delta_{s}} \in W_{j+1}$. But

$$
\begin{aligned}
& \left(d_{\ell}-i e_{\ell}\right) / 2 \delta_{\ell}+\left(d_{\ell}+i e_{\ell}\right) / 2 \overline{\delta_{\ell}}=\left(d_{\ell}-i e_{\ell}\right) / 2\left(\beta_{\ell}+i \gamma_{\ell}\right)+\left(d_{\ell}+i e_{\ell}\right) / 2\left(\beta_{\ell}-i \gamma_{\ell}\right) \\
& =(1 / 2)\left(d_{\ell} \beta_{\ell}+i d_{\ell} \gamma_{\ell}-i e_{\ell} \beta_{\ell}+e_{\ell} \gamma_{\ell}+d_{\ell} \beta_{\ell}-i d_{\ell} \gamma_{\ell}+i e_{\ell} \beta_{\ell}+e_{\ell} \gamma_{\ell}\right)=d_{\ell} \beta_{\ell}+e_{\ell} \gamma_{\ell}
\end{aligned}
$$

So we have $0=\alpha_{2}+\alpha_{3}$ which means $\alpha_{2}=\alpha_{3}=0$ since W_{j} and W_{j+1} are independent. But then linear independence of $\delta_{1}, \ldots, \delta_{s}$ implies $d_{\ell}-i e_{\ell}=0$ for all ℓ. Also $0=\overline{2 \alpha_{3}}=\sum \overline{d_{\ell}+i e_{\ell}} \delta_{\ell}$ so $d_{\ell}+i e_{\ell}=0$ for all ℓ. Thus $d_{\ell}=e_{\ell}=0$ for all ℓ and thus $\left\{\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}, \ldots, \beta_{s}, \delta_{s}\right\}$ is linearly independent.

Suppose the Jordan form of A has a $k \times k$ Jordan block with a nonreal diagonal entry $c=a+b i$. This Jordan block corresponds to a cyclic subspace $Z(\alpha ; A)$ with basis $\left\{\alpha, N \alpha, \ldots, N^{k-1} \alpha\right\}$. Write $N^{j} \alpha=\beta_{j}+i \gamma_{j}$ where β_{j} and γ_{j} are real. Then

$$
\begin{gathered}
A \beta_{j}+i A \gamma_{j}=A\left(\beta_{j}+i \gamma_{j}\right)=(N+a I+b i I)\left(\beta_{j}+i \gamma_{j}\right)=N\left(\beta_{j}+i \gamma_{j}\right)+(a+b i)\left(\beta_{j}+i \gamma_{j}\right) \\
=\beta_{j+1}+i \gamma_{j+1}+a \beta_{j}-b \gamma_{j}+i\left(a \gamma_{j}+b \beta_{j}\right)
\end{gathered}
$$

So we get $A \beta_{j}=\beta_{j+1}+a \beta_{j}-b \gamma_{j}$ and $A \gamma_{j}=\gamma_{j+1}+a \gamma_{j}+b \beta_{j}$ So the matrix of the restriction of A to the subspace spanned by $\beta_{0}, \gamma_{0}, \beta_{1}, \gamma_{1}, \ldots, \beta_{k-1}, \gamma_{k-1}$ using the basis $\left\{\beta_{0}, \gamma_{0}, \beta_{1}, \gamma_{1}, \ldots, \beta_{k-1}, \gamma_{k-1}\right\}$ is the $2 k \times 2 k$ matrix $R J_{k}(c)=\left[\begin{array}{ccccc}B & 0 & \cdots & 0 & 0 \\ I & B & \cdots & 0 & 0 \\ 0 & I & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & B & 0 \\ 0 & 0 & \cdots & I & B\end{array}\right]$ where I is the 2×2 identity and $B=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$.

Thus in the end, for any linear operator $T: V \rightarrow V$ there is a basis \mathcal{A} of V so that $[T]_{\mathcal{A}}$ is block diagonal with each diagonal block either $J_{k}(c)$ for some real characteristic value c, or $R J_{k}(c)$ for some non-real c.

