
1

Basic Programming

Table of Contents
Introduction ... 1
Displaying Stuff - disp .. 1
Condition - if ... 1
Loop - for ... 2
More Examples of Loop - for ... 5
Using for Loops to Store Answer in Vectors ... 6
Loop - while ... 7
The General Idea when Comparing Successive Values .. 10
Closing ... 11

Introduction
If you've had any programming experience at all then most of this lesson will be straightforward. Here
we'll introduce some basic programming structures which will show up in our M-files.

Displaying Stuff - disp
We know that if we do a calculation the output is printed unless we suppress this by ending the calculation
with a semicolon. However what if we wish to display something like some text or the variable without
the x = which Matlab automatically inserts? Well there are many ways to do this but the disp command
(display) is the easiest. The format is disp(X) where X is either a string or a vector of strings. Keep in
mind though that numbers can be converted to strings with num2str and symbolic expressions to strings
with char. Here are some examples. Make sure you parse them carefully to understand what they do!

disp('Hello World!')

Hello World!

x=2;
disp(['The value of x is ',num2str(x)])

The value of x is 2

syms t;
disp(['The derivative of t^2 is ',char(diff(t^2,'t'))])

The derivative of t^2 is 2*t

Condition - if
An if statement can be used to execute a statement if a certain condition is met. The general simplest
syntax is:

if expression
statement
end

Basic Programming

2

We should pause to note here that Matlab is situation-aware. By that we mean that if you type the line

if (x>3)

into Matlab and press Enter nothing will happen. Matlab is waiting for you to finish your if-statement-end
structure. Matlab will do nothing until you type end and press Enter. So type the following exactly as
you see it:

x=5;
if (x>3)
 disp(['x was bigger than 3 so here is twice it: ',num2str(2*x)])
end

x was bigger than 3 so here is twice it: 10

Here we see that since x is in fact greater than 3 the code between if and end is executed. On the other
hand the following gives no output.

x=2;
if (x>3)
 disp(['This disp will not execute, how sad!'])
end

Here since the condition is false the code is not executed. If we want to test multiple conditions and if we
wish to have a catch-all which occurs if none of the conditions are met we can do that with the general
form as follows:

if expression1
statement1
elseif expression2
statement2
...
else
catchallstatement
end

What happens here is that first expression1 is tested and if it's true then statement1 is executed.
If not then expression2 is tested and if it's true then statement2 is executed and so on. If none
of them are true then catchallstatement is executed. As in the previous example Matlab will do
nothing until you end.

IMPORTANT: If you need the if statement to be a compound statement you can use & for and and |
for or. For example

if (x>0 & x<10)

will check both conditions whereas

if (x<3 | x>5)

will require only one to be true.

Loop - for
Supose we wanted to assign the variable x to each of the numbers 1 through 5 and then print 2 times each.
We could do this:

Basic Programming

3

x=1;
disp(num2str(2*x))
x=2;
disp(num2str(2*x))
x=3;
disp(num2str(2*x))
x=4;
disp(num2str(2*x))
x=5;
disp(num2str(2*x))

2
4
6
8
10

This is pretty tedious. If we needed to do something complicated with each of the x values it would be
even worse and if we needed to assign x to each of the numbers 1 through 100 even worse still. The for
loop allows us to do this in a much more straightfoward manner. Abstractly it works like this:

for x=(tell it which x values to do)
what to do with each x
end

The way we tell Matlab to go through all the x values is with a vector. So now the commands above with
the variable x can be taken care of with either

for x=[1 2 3 4 5]
 disp(num2str(2*x))
end

2
4
6
8
10

or

for x=[1:5]
 disp(num2str(2*x))
end

2
4
6
8
10

Like with if nothing will happen until you end so go ahead and type this straight into Matlab as above.
Here is another example with vector notation:

for x=[0:pi/6:pi/2]
 disp(['The sine of ',num2str(x),' is ',num2str(sin(x))])
end

Basic Programming

4

The sine of 0 is 0
The sine of 0.5236 is 0.5
The sine of 1.0472 is 0.86603
The sine of 1.5708 is 1

The variable x runs from 0 to pi/2 in steps of pi/6 and sin(x) is taken at each step.

The general form is:

for v=vector
statement1
statement2
...
end

Here v is the vector which says which values x will run through and statement1, statement2,...
are statements which will be executed.

Consider the following example which finds the derivative of x^2 through x^7.

syms x;
for n=[2:7]
 diff(x^n,x)
end

ans =

2*x

ans =

3*x^2

ans =

4*x^3

ans =

5*x^4

ans =

6*x^5

ans =

7*x^6

Basic Programming

5

Now then, for loops don't actually have to do anything with the looping variable, it can just be used as
a counter. For example the following just says Hi! four times.

for n=[1:4]
 disp('Hi!')
end

Hi!
Hi!
Hi!
Hi!

Here is a for loop which does something more - it adjusts a value as it goes along. Imagine you wanted
to start with the number 1.2 and square it five times. You can do this as follows. Notice how the code
works. mynum is initially set to be 1.2 and is then adjusted within the for loop each time. Within the
loop mynum is reassigned.

mynum=1.2;
for n=[1:5]
 mynum=mynum^2;
 disp(mynum)
end

 1.4400

 2.0736

 4.2998

 18.4884

 341.8219

If you just wish to print the final answer you can do:

mynum=1.2;
for n=[1:5]
 mynum=mynum^2;
end
disp(mynum)

 341.8219

More Examples of Loop - for
Here are some other examples:

Example 1: Adding the numbers 1 through 10.

How can we add the numbers 1 through 10 in Matlab? We first assign a total with the value 0 and then
we successively add the numbers 1 through 10 to that total:

total=0;

Basic Programming

6

for n=[1:10]
 total=total+n;
end
disp(total);

 55

Example 2: The function f(x)=2.5x(1-x) appears in certain population dynamics. The way it works
is that if you plug in one year's population it outputs the next year's population. Here's a matlab loop which
gives the next five years' populations if the initial population is 0.3 (think thousands):

f = @(x) 2.5.*x.*(1-x);
pop = 0.3;
disp(['Start at ',num2str(pop)]);
for n=[1:5]
 pop=f(pop);
 disp(['Next at ',num2str(pop)]);
end

Start at 0.3
Next at 0.525
Next at 0.62344
Next at 0.58691
Next at 0.60612
Next at 0.59685

Using for Loops to Store Answer in Vectors
Often we may do a calculation which requires us to store several different values. We can do this by storing
those values in a vector. Mathematically a vector is just an ordered collection of numbers. We assign
vectors using [] notation. Here is an example:

a = [1 -2 4 5]

a =

 1 -2 4 5

Here a is a vector containing four numbers. If we want to access just one of those four we use () notation:

a(2)

ans =

 -2

Or to change one of them we can assign this way. Notice that Matlab gives us the entire new vector back
to see.

a(3)=17

Basic Programming

7

a =

 1 -2 17 5

Suppose now we want to do a calcuation of something like sin(2^1), sin(2^2), ..., sin(2^7) and
store them all in a vector. First we assign a vector with 7 entries and then we use a for loop to do the work:

v=[0 0 0 0 0 0 0];
for i=[1:7]
 v(i)=sin(2^i);
end

Then we can see it. Notice that because the vector stretched beyond the screen width matlab labeled the
entries (columns) on each line.

v

v =

 0.9093 -0.7568 0.9894 -0.2879 0.5514 0.9200 0.7210

Or just one entry

v(2)

ans =

 -0.7568

Loop - while
The trouble with a for loop is that it executes a statement a certain fixed number of times. Often in
mathematics we wish to execute a statement an unknown number of times until a criteria is met. For
example when we do the bisection method to find a root we iterate until we're close enough, which could
mean until our interval is some certain size. If we do a Riemann sum we might wish to increase the number
of subintervals until our sum settles down, meaning it doesn't change by more than say 0.1 from iteration
to iteration. In Matlab this is done most easily with a while loop. The general form of this loop is:

while (some conditions are met)
statement1
statement2
...
end

What happens in this case is that Matlab enters the while statement and tests the conditions. If they're true it
proceeds through the statements. At the end it goes back to the beginning and tests again. If the statements
(any of them) are ever false it ends the loop. Here is a simple example with its output:

x=3;

Basic Programming

8

while (x<10)
 disp(['The value of x is ',num2str(x)]);
 x=x+1;
end
disp(['At the final exit the value of x is ',num2str(x)]);

The value of x is 3
The value of x is 4
The value of x is 5
The value of x is 6
The value of x is 7
The value of x is 8
The value of x is 9
At the final exit the value of x is 10

What this code does is starts by assigning the value x=3. The while statement checks the value, finds
it's less than 10 and goes into the loop. It prints the text and value and then increments the value by 1 (this
is what the x=x+1 does). Then it goes back and tests x<10 again. The final time the statements in the
loop will be executed is when x=9. At the end of this iteration Matlab does x=x+1 at which point x=10
and then Matlab goes back to the while, sees it fails and drops out. Keep in mind that x=10 upon exit
but the code does not execute with x=10.

This next example is related to one of the earlier for loops. Again we start with the number 1.2 but
now we repeatedly square the number until we get above 1000000 and then we stop. This happens pretty
quickly! Notice what the while does - it checks if mynum is <=1000000 and if so, it keeps going,
squaring over and over. We've made it neater using disp.

mynum=1.2;
while (mynum <= 1000000)
 disp(['Now the number is ',num2str(mynum)])
 mynum=mynum^2;
end
disp(['Dropping out of the loop the number is ',num2str(mynum)])

Now the number is 1.2
Now the number is 1.44
Now the number is 2.0736
Now the number is 4.2998
Now the number is 18.4884
Now the number is 341.8219
Now the number is 116842.2058
Dropping out of the loop the number is 13652101047.4993

Here is a while loop which divides a number by 2 over and over until the result is less than or equal
to 1. Think " while the number is greater than 1, keep dividing." Furthermore this code only prints the
final result.

mynum=2753;
while (mynum > 1)
 mynum=mynum/2;
end
disp(mynum)

 0.6721

Basic Programming

9

Here's a more sophisticated example. It calculates successive partial sums 1/1+1/2+...+1/n starting
with n=1 until successive sums are within 0.01 of each other. All the while it prints out a summary. Note
the use of a new variable within the loop so that the old variable is not immediately lost. Also note that
oldvalue is initially set to be large enough to get us into the loop.

oldvalue = 1/1;
newvalue = 1/1+1/2;
n = 2;
while (abs(newvalue-oldvalue) >= 0.1)
 disp(['Adding up to 1/',num2str(n),' yields ',num2str(newvalue)]);
 oldvalue = newvalue;
 n = n+1;
 newvalue = newvalue+1/n;
end

Adding up to 1/2 yields 1.5
Adding up to 1/3 yields 1.8333
Adding up to 1/4 yields 2.0833
Adding up to 1/5 yields 2.2833
Adding up to 1/6 yields 2.45
Adding up to 1/7 yields 2.5929
Adding up to 1/8 yields 2.7179
Adding up to 1/9 yields 2.829
Adding up to 1/10 yields 2.929

Here's the same with 1/0!+1/1!+1/2!+...+1/n! instead, the tolerance set to
0.000000000000001 and format long for more decimals. We've had to use num2str(sum,20)
too which forces num2str to display up to 20 decimal digits rather than the usual four. If you remember
something about series it may be familiar to you!

Hint: What does 1/0!+1/1!+1/2!+... converge to?

format long;
tol = 0.0000000000000001;
oldvalue = 1/factorial(0);
newvalue = 1/factorial(0)+1/factorial(1);
n = 1;
while (abs(newvalue-oldvalue) >= tol)
 disp(['Adding up to 1/',num2str(n),'! yields ',num2str(newvalue,20)]);
 oldvalue = newvalue;
 n = n+1;
 newvalue = newvalue+1/factorial(n);
end

Adding up to 1/1! yields 2
Adding up to 1/2! yields 2.5
Adding up to 1/3! yields 2.6666666666666665186
Adding up to 1/4! yields 2.7083333333333330373
Adding up to 1/5! yields 2.716666666666666341
Adding up to 1/6! yields 2.718055555555555447
Adding up to 1/7! yields 2.7182539682539683668
Adding up to 1/8! yields 2.7182787698412700372
Adding up to 1/9! yields 2.7182815255731922477
Adding up to 1/10! yields 2.7182818011463845131
Adding up to 1/11! yields 2.7182818261984929009

Basic Programming

10

Adding up to 1/12! yields 2.7182818282861687109
Adding up to 1/13! yields 2.7182818284467593628
Adding up to 1/14! yields 2.7182818284582301871
Adding up to 1/15! yields 2.7182818284589949087
Adding up to 1/16! yields 2.7182818284590428703
Adding up to 1/17! yields 2.7182818284590455349

The General Idea when Comparing Successive
Values

It's extremely common to continue a calculation until some particular tolerance is reached. To help you
see what the code should look like here's a code template. The idea for this template is that we're finding
successive values of a variable for n=1, n=2, ... until they differ by less than tol.

Set oldvalue = the first value, corresponding to n=1.
Set newvalue = the second value, corresponding to n=2.
Set n = 2.
while (abs(oldvalue-newvalue)>=tol)
 oldvalue = newvalue;
 n=n+1;
 newvalue = find the new value for this new n.
end;
At this point, newvalue has the final calculated value.

Please make sure you see how this works. First we find the first two values, oldvalue and newvalue
we're interested in. We set n=2 because that's how far we've gone. We then start the loop, comparing
these values (note we compare while the difference is too big!) Inside the loop we make oldvalue
equal to newvalue, add 1 to n and then find a new newvalue. The while loop check then happens
again and we continue.

In general the only things that need to be done to turn this into workable code is:

1. Set the oldvalue correctly for whatever you're finding.

2. Set the newvalue correctly for whatever you're finding.

3. Inside the loop, set the newvalue correctly for an unknown n.

Make sure to look at the two examples given earlier and see how they fit this template. The only additional
thing they have is the disp statement.

Just to finish it off, here's one more example. It finds values of the integral from 1/x^2 from 1/n to 2
as n gets larger and larger, starting at n=1 until successive values differ by less than 0.001. The disp
at the end just displays it.

syms x;
tol = 0.001;
oldvalue = int(x^2,1/1,2);
newvalue = int(x^2,1/2,2);
n=2;
while (abs(oldvalue-newvalue) >= tol)
 oldvalue = newvalue;
 n = n+1;
 newvalue = int(x^2,1/n,2);

Basic Programming

11

end;
disp(double(newvalue));

 2.665694849368319

Closing
In closing we should mention that Matlab is a full-fledged programming language and there are many
commands other than these. We recommend searching the Web and the help files to see what else can be
done. We will explore other commands as we venture into M-files.

Published with MATLAB® 8.0

	Table of Contents
	Introduction
	Displaying Stuff - disp
	Condition - if
	Loop - for
	More Examples of Loop - for
	Using for Loops to Store Answer in Vectors
	Loop - while
	The General Idea when Comparing Successive Values
	Closing

