
Math 241 Exam 3 Sample 3 Solutions

1. (a) The easiest method would be r̄(r, θ) = r cos θ ı̂+ r sin θ ̂+ (9− r2) k̂ with 0 ≤ r ≤ 3 and
0 ≤ θ ≤ 2π.

(b) Since z = 4− y2 this shape is a parabolic sheet as shown:
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(c) We need to change this to polar first since the integrand is not integrable with respect to
y or x. The region R is the quarter disk of radius 1 in the first quadrant and so we have:
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2. (a) The picture is:
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The lines meet when y = x meets y = 1

2
x + 4 at x = 8. Thus the integral would be
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(b) The picture is:

r=1
r=2cos(theta)

The circles meet when r = 1 meets r = 2 cos θ which is when cos θ = 1
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or θ = ±π
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the integral is
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3. (a) The picture is:

x=sin(y)

pi

(b) The picture is:

theta=−pi/4
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r=2sec(theta) aka x=2

(c) We have z = 4−
√
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√
r2 = 4− r.



4. (a) The picture is:
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The iterated integral is
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(b) The picture is:
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5. We rewrite the ellipse as (2x)2+(3y)2 = 36 and subsitute u = 2x and v = 3y. The new region
S is then inside the circle u2 + v2 = 26.

The pictures are:
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Then x = u/2 and y = v/3 so that
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. So we have
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