
Math 241 Chapter 14 Dr. Justin O. Wyss-Gallifent

§14.1 Double Integrals

1. These can be defined via a Riemann Sum method like in Calculus I but the net result is: We can
define the double integral of f(x, y) over R, denoted

∫∫

R
f(x, y) dA to be the signed volume under

the graph of f(x, y) within the region R. The question is how to evaluate these things. First...

2. Defn: An iterated integral is a nested integral. An inner integral may have limits of integration
which include variables further out. We evaluate these by working from the inside out, making
sure we integrate with respect to the correct variable each time.

3. Now then, onto evaluation of
∫∫

R
f(x, y) dA.

(a) R is vertically simple if R may be described as between the two functions y = bot(x) and

y = top(x) on the interval a ≤ x ≤ b. In this case
∫∫

R

f(x, y) dA =
∫ b

a

∫ top

bot
f(x, y) dy dx.

(b) R is horizontally simple if R may be described as between the two functions y = left(x) and

y = right(x) on the interval c ≤ y ≤ d. In this case
∫∫

R

f(x, y) dA =
∫ d

c

∫ right

left
f(x, y) dx dy.

Consider in both cases that if either the top, bottom, left or right function ever changes then you
will need more than one integral.

4. We can reparametrize (HS to VS or VS to HS) to do an impossible integral like
∫ 1

0

∫ 1

x
e(y

2) dy dx.

§14.2 Double Integrals in Polar Coordinates

1. Reminder about how polar coordinates work. Shapes we’ll see a lot include things like r = 2,
r = 3 cos θ, r = 2 sin θ, r = 1 + cos θ as well as vertical and horizontal lines which need to be
converted. Don’t forget x = r cos θ, y = r sin θ and x2 + y2 = r2.

2. We describe a region in polar coordinates from the point of view of a person who lives at the
origin. There is a near function r = near(θ) and a far function r = far(θ) between two angles

α ≤ θ ≤ β. In this case
∫∫

R

f(x, y) dA =
∫ β

α

∫ far

near
f(r cos θ, r sin θ) r dr dθ. We’ll see later where

that extra r comes from. It might help to remember it’s the “Jacobian r”.

3. We can reparametrize (to polar) to do an impossible integral like
∫ 1

−1

∫

√

1−x2

0
sin(x2 + y2) dy dx.

§14.4 Triple Integrals

1. Finding a volume analogy is tricky. Instead suppose D is a solid object in space and at any point
f(x, y, z) is the density around that point. Then we can define

∫∫∫

D

f(x, y, z) dV as the mass of

D. The question is how to evaluate which all depends upon how to best describe D.

2. We have the following:

(a) If D is the solid between the graphs of z = low(x, y) and z = high(x, y) above the region R

in the xy-plane and if R is VS then
∫∫∫

D

f(x, y, z) dV =
∫ b

a

∫ top

bot

∫ high

low
f(x, y, z) dz dy dx.

(b) If D is the solid between the graphs of z = low(x, y) and z = high(x, y) above the region R

in the xy-plane and if R is HS then
∫∫∫

D

f(x, y, z) dV =
∫ d

c

∫ right

left

∫ high

low
f(x, y, z) dz dx dy.



§14.5 Triple Integrals in Cylindrical Coordinates

1. Cylindrical coordinates are just polar coordinates plus z. The thing to watch out for is how
equations change. For example:

(a) r = 2 is a cylinder, as are r = 3 cos θ and r = 2 sin θ.

(b) The sphere x2 + y2 + z2 = 9 becomes r2 + z2 = 9.

(c) The cone z =
√

x2 + y2 becomes z = r.

(d) The plane x = 2 becomes r cos θ = 2 or r = 2 sec θ.

2. If D is the solid between the graphs of z = low(x, y) and z = high(x, y) above the region R in the
xy-plane and if R is polar then we have to convert low and high to polar functions z = low(r, θ)
and z = high(r, θ) in terms of r and/or θ and then
∫∫∫

D

f(x, y, z) dV =
∫ β

α

∫ far

near

∫ high

low
f(r cos θ, r sin θ, z) r dz dθ dr.

§14.6 Triple Integrals in Spherical Coordinates

1. Describe how spherical coordinates work and make sure to mention the conversions:

(a) x = ρ sinφ cos θ

(b) y = ρ sinφ sin θ

(c) z = ρ cosφ

(d) x2 + y2 + z2 = ρ2

(e) x2 + y2 = ρ2 sin2 φ

2. Equations can change here. For example:

(a) ρ = 2 is a sphere.

(b) The cylinder x2 + y2 = 4 becomes ρ = 2 cscφ.

(c) φ = π
4 is a cone.

(d) The plane z = 3 becomes ρ = 3 secφ.

3. To describe a solid in spherical we take a range α ≤ θ ≤ β and γ ≤ φ ≤ δ From the point of view
of a person at the origin this describes a “window” looking out. In that window we have a near
function ρ = near(φ, θ) and a far function ρ = far(φ, θ).

4. If D is described this way then
∫∫∫

D

f(x, y, z) dV =
∫ β

α

∫ δ

γ

∫ far

near
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφ dρ dφ dθ.

Don’t forget that ρ2 sinφ. It’s the “Jacobian” again.



§14.8 Change of Variables in Double Integrals

1. A change of variables is basically a substitution. In calc II when we did a trig sub like x = sinu
we had to make sure that dx got replaced by cosu du and we have to do the same sort of thing
here.

2. Method: If we substitute x = f(u, v) and y = g(u, v) then three things happen:

(a) The region R in the xy plane changes to a new region S in the uv plane.

(b) The integrand changes since x and y get replaced.

(c) dA gets replaced by |Jac| dA where Jac is the Jacobian and is defined by

Jac =

∣

∣

∣

∣

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

∣

∣

∣

∣

3. We have three classic examples:

(a)
∫∫

R

xy dA for R the parallelogram bounded by y = x + 1, y = x + 4, y = 4 − 2x and

y = 10− 2x. We first rewrite the bounds as y−x = 1, y−x = 4, 2x+ y = 4 and 2x+ y = 10
and then put u = y−x and v = 2x+y. The new region S is the rectangle bounded by u = 1,
u = 4, v = 4 and v = 10. In order to find Jac though we need to solve for x and y. We get
x = − 1

3u+ 1
3v and y = 2

3u+ 1
3v and so Jac = − 1

3 and then we go from there.

(b)
∫∫

R

x dA for R the elliptical disk x2

9 + y2

16 ≤ 4. We substitute u = x
3 and v = y

4 and the new

region S is the disk u2 + v2 ≤ 4. We use x = 3u and y = 4v to find Jac and go from there.
The catch to this is that the new region is a disk so polar makes sense but now it’s polar in
the uv-plane. We use u = r cos θ and v = r sin θ.

(c)
∫∫

R

y dA for R the region bounded by y = x, y = 3x, y = 1/x and y = 5/x. We first rewrite

the bounds as y/x = 1, y/x = 3, xy = 1 and xy = 5 and then put u = y/x and v = xy. Like
the first example we have to solve for x and y. I like this example because Jac has a variable
in it whereas the other examples have a constant Jac.



§14.9 Parametrized Surfaces

1. When we parametrized a curve we wrote it as r̄(t) for some values of t. Each value of t gives a
vector which points from the origin to a point on the curve. The idea now is to do the same with
surfaces. We’ll do r̄(u, v) = x(u, v) ı̂+ y(u, v) ̂+ z(u, v) k̂ for some u and v. Each pair (u, v) gives
a vector which points from the origin to a point on the surface. Note that the use of u and v is
arbitrary and generic and mostly we’ll see r̄(x, y), r̄(r, θ), r̄(z, θ) and other familiar letters.

2. The best way to see how this works is to look at a bunch of examples. Basically the surface we’re
interested in somehow gets used in the parametrization and any restrictions on the surface get
used in the restrictions on the variable and on the choice of variables.

(a) The plane z = 3 with 0 ≤ x ≤ 3 and 0 ≤ y ≤ 4. This is a little rectangle. We have

r̄(x, y) = x ı̂+ y ̂+ 3 k̂ with 0 ≤ x ≤ 3 and 0 ≤ y ≤ 4.

(b) The piece of z = 3 inside r = 3. This is a little disk. Since polar is better we use r̄(r, θ) =

r cos θ ı̂+ r sin θ ̂+ 3 k̂ for 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π.

(c) The piece of x = −2 inside the cylinder y2 + z2 = 9. This is almost the same as the previous

but turned on its side. We use r̄(r, θ) = −2 ı̂+r cos θ ̂+r sin θ k̂ for 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π.

(d) The piece of x2 + y2 = 9 between z = 0 and z = 7. We use r̄(θ, z) = 3 cos θ ı̂+ 3 sin θ ̂+ z k̂
with 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 7.

(e) The piece of the sphere x2+ y2+ z2 = 16 inside the cone φ = π/6. We base this off spherical

and use r̄(φ, θ) = 4 sinφ cos θ ı̂+ 4 sinφ sin θ ̂+ 4 cosφ k̂ with 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/6.

(f) The piece of the plane x + 2y + 3z = 12 to the right of the rectangle in the xz-plane with

opposite corners (0, 0, 0) and (4, 0, 2). We use r̄(x, z) = x ı̂+
(

12−x−3z
2

)

̂+z k̂ with 0 ≤ x ≤ 4
and 0 ≤ z ≤ 2.

Later on we’ll also see examples where one (but only one) of the variables can depend upon the
other one much like with VS and HS regions. For now these are good though.


