Math 241 Exam 4 Solutions

1. Let ¥ be the portion of z = 16 — 22 — 32 inside the cylinder r = 2cosf and with upwards [20 pts]
orientation. Draw a picture of ¥ and find the rate at which the fluid F(z,y,2) = 0i+xj+ 0k
is flowing through .
Stop when you have an iterated double integral.

Solution:
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We parametrize ¥ as 7(r, 0) = r cos 0 i+r sin 0 j+(16—r2) k for —5 <0< Zand0<r < 2cosd.
Then
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Note that these vectors have positive l;:—component so they match the orientation for 3. Then
we have:
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2. (a) Evaluate [ y dz+ (z+1) dy where C is parametrized by 7(t) = e’ sin(nt) i + e cos(nt) J  [7 pts]
c

for0<t< 1.
Stop when you have an unsimplified numerical answer.
Solution:

The vector field is conservative with potential function f(z,y) = xy + y. The start point
is 7(0) = 0@+ 17 or (0,1) and the end point is #(1/2) = e'/27 4 0] or (1/¢,0). Then by
the FToLI we have

/Cy do+ (z+1) dy = £(/,0) = f(0,1) =0—1=—1

(b) Find the mass of the wire C, where C' is the line segment in the xy-plane joining (2,0) [13 pts]
to (5,4) and the density is f(x,y) = 3zy.
Stop when you have an unsimplified numerical answer.
Solution:

The curve C is parametrized by 7(t) = (2+3t)i+ (0 +4¢)j for 0 < ¢ < 1. Then
7(t)=31+4jso ||F(t)]| = V25 =5 and so the mass is
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3. Evaluate [ 2? dx + 3zy dy where C is the curve shown in the picture. [20 pts]
c

Solution:

By Green’s Theorem we can change to an integral over R which is the region inside C. We
parametrize R as vertically simple. Therefore:
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4. Let C be the triangle with vertices (5,0,0), (0,5,0) and (0,0,5) oriented clockwise when [25 pts]
viewed from above. Use Stokes’ Theorem to find the work done on a particle by the force
F(r,y,2) =yzi+yj+ myl% as the particle traverses the curve C. Include a picture of C' and
Y (these can be together on one picture).

Stop when you have an iterated double integral.

Solution:

The triangle is the boundary of the portion of the plane x + y 4+ z = 5 in the first octant so
this is . The counterclockwise orientation of C' induces an upwards orientation on X.

The surface ¥ is parametrized by 7(z,y) = zt+yj+ (5 —x — y)lAc with 0 < =z < 5 and
0 <y <5 —x. This gives us

Fp=11+07—1k
Fy=0i+15-1k
FoXxTy=1i+1j+1k

which matches the orientation of X.
Then we have Vx F =27+ 0] — 2k and so all together:
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5. Let ¥ be the portion of the cone z = \/22 + y2 inside the sphere 2% + y? + 22 = 9 as well as  [15 pts]
the portion of the sphere inside the cone.
Find the rate at which the fluid F(z,y,2) = yi+xj+ 2* k is flowing inwards through X.
Stop when you have an iterated triple integral.

Solution:

By the Divergence Theorem and considering the orientation of ¥ we have:
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