1. What is the cardinality of $\{\mathbb{Z}, \{1, 2\}, 2, \mathbb{Q}, \emptyset\}$? [3 pts]2. Write the elements in $\mathcal{P}(\mathcal{P}(\{1\}))$. [7 pts]3. Let $S = \{0, 3, 6, 9, 12\}$. Describe the set $\{1, 2, 3, 4\}$ in the form $\{f(x) \mid x \in S \text{ and } p(x)\}$ for some functions f(x) and p(x). 4. Fill in the following truth table only for the possibilities given. [15 pts] $P \land Q \quad (P \land Q) \to R \quad R \to (P \land Q)$ RPQТ Т Т T Т F F Т \mathbf{F} F F F 5. Consider the open sentences over the domain $\mathcal{P}(\{1, 2, 3, 4\})$ [10 pts]

$$P(A): A \cap \{1\} \neq \emptyset \text{ and } Q(A): |A| \le 3$$

Explicitly list all sets $A \in \mathcal{P}(\{1, 2, 3, 4\})$ for which $P(A) \wedge Q(A)$ is true.

6. Consider the open sentences over the domain \mathbb{R}

$$P(x): x - 1 \ge 0$$
 and $Q(x): x^2 + 3x \le 0$

Find all $x \in \mathbb{R}$ such that $P(x) \to Q(x)$ is true. List as intervals.

- 7. Determine if the following are true or false, with justification.
 - [5 pts](a) $\exists x \in \{1, 2, 3\}, 3 | 5x - 1$
 - (b) $\forall x \in \mathbb{N}, 2x + 1$ is prime. [5 pts]
- 8. Let $a \in \mathbb{Z}$. Prove that a is even iff a^2 is even. [20 pts]
- 9. Let $n \in \mathbb{Z}$. Prove that if $n \not\equiv 0 \pmod{3}$ then $n^2 \equiv 1 \pmod{3}$. [15 pts]

Extra Credit: In class we discussed negating \exists and \forall but not \exists !. Figure out how to rewrite the $[\leq 5 \text{ pts}]$ following: $\sim [\exists !x, P(x)]$ using any symbols except $\exists !$.

[10 pts]

[10 pts]