1. Prove that for $n \in \mathbb{N}$ we have $1 + 3 + 3^2 + + 3^n < 3^{n+1}$.	[4 pts]
2. Find the coefficient of x^2y^5 in the expression $(3x - 2y)^7$.	[6 pts]
3. Prove that for $n \in \mathbb{N}$ and $b \in \mathbb{R}^+$ we have $(2+b)^n \ge b^n + 2nb^{n-1}$.	[5 pts]
4. Prove that $f: (\mathbb{R} - \{0\}) \to (\mathbb{R} - \{2\})$ given by $f(x) = \frac{2x+1}{x}$ is invertible and find $f^{-1}(y)$.	[10 pts]
5. Give an explicit example of a non-invertible surjective function $f : \mathbb{R} \to \mathbb{R}$. Prove non-invertibility but do not prove surjectivity.	[10 pts]
6. Prove that $\left\{\frac{n^2}{2n^2+3}\right\}$ does not converge to 1.	[10 pts]
7. (a) Prove that if $\{a_n\}$ and $\{b_n\}$ both converge to some c then for any ϵ there is some $N \in \mathbb{N}$ such that for $n > N$ we have $ a_n - b_n < \epsilon$.	[10 pts]
(b) Provide a counterexample to prove that the converse of (a) is false. You do not need to prove your counterexample works.	[5 pts]
8. Define $f(x) = \begin{cases} x+1 & \text{if } x < 2\\ 7-x^2 & \text{if } x \ge 2 \end{cases}$	[10 pts]

Prove that f'(2) does not exist.

- 9. Prove that $f(x) = 2x^2 3x + 1$ is continuous at x = 2. [15 pts]
- 10. Find a bijection between \mathbb{Q}^+ and $\mathbb{N} \times \mathbb{N}$. You need not prove it's a bijection. [15 pts]