52 ADVANCED CALCULUS
The assertion that a closed bounded subset of R is compact is often referred to as the

Heine-Borel Theorem. The assertion that a closed bounded subset of R is sequentially
compact is often referred to as the Bolzano-Weierstrass Theorem.

EXERCISES FOR SECTION 2.5

1. For each of the following statements, determine whether it is true or false and justify

your answer.
a. Every bounded set is closed.

b. Every closed set is bounded.

¢. Every closed set is compact.

d. Every bounded set is compact.

e. A subset of a compact set is also compact.

2. For each of the following statements, determine whether it is true or false and justify
your answer.
a. The set of irrational numbers is closed.
b. The set of rational numbers in the interval [0, 1] is compact.
c. The set of negative numbers is closed.

3. Let a and b be numbers with a < b. Define S =[a,b) = {x |a <x < b}.
a. Using the definition of sequential compactness, show that § is not sequentially
compact.
b. Using the definition of compactness, show that S is not compact.
¢. Using the definition of closedness, show that S is not closed.
4. Let S be the set of rational numbers in the interval {0, 2].
a. Using the definition of sequential compactness, show that S is not sequentially
compact.
b. Using the definition of compactness, show that S is not compact.
c. Using the definition of closedness, show that S is not closed.
5. Let S be a set consisting of a single point. Show that S is compact.
. Let S == [0, 1] U [3, 4]. Show that the set S is compact.
7. Let A and B be compact sets. Show that the union AU B and the intersection AN B
are also compact.

8. Let A and B be sets in R. If the union A U B is compact, is it true that both A and
B must also be compact?

(=5

9. At what single point in the proof that sequential compactness implies compactness
is the assumption used that the members of the cover are open intervals?

10. For each natural number , let I, be a closed bounded interval. Suppose that {1,}32

covers the compact set consisting of the closed bounded interval [0, 1]. Is it true that
this cover has a finite subcover?

11. Examine the proof of the theorem that sequential compactness implies compactness
and show that the only property of the sets I, in the cover that we used was that if a
point x lies in 1,, then there is an open interval J centered at the point that also lies
in I,. A set having this property is called open.

12. Provide a direct nroof that a seauentiallv comnact set must he hoth closed and
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CONTINUOUS
FUNCTIONS

3.1 CONTINUITY

In Chapter 2, we considered real-valued functions that have as their domains the set of
natural numbers; that is, we considered sequences of real numbers. We now begin the
study of real-valued functions having as their domains a general subset of R. There is a
standard notation: For a set of real numbers D, by

fiD->R

we denote a function whose domain is D, and for each point x in D we denote by f(x)
the value that the function assigns to x. When we write f: D — R, we will assume
without further mention that D is a set of real numbers.

Two of the concepts essential to an analytic description of functions f: D — R are
continuity and differentiability. The first five sections of this chapter are devoted to the
study of continuity. In the final section we study limits in preparation for the discussion
of differentiability, which we will begin in Chapter 4.

Definition A function f: D — Ris said to be continuous at the point xy in D provided
that whenever {x,} is a sequence in D that converges to xo, the image sequence { f(x,)}
converges to f (xp). The function f: D — R is said to be continuous provided that it is
continuous at every point in D.

The definition of continuity of the function f: D — R at the point xp in D is
formulated to make precise the intuitive notion that “if x is a point in D that is close
to xg, then its image f (x) is close to f(xg),” or, what is supposed to describe the same
property, “the difference f(x) — f(xo) becomes arbitrarily small if the point x in D
is sufficiently close to xo.” These statements are placed in quotation marks because
we are unable to make mathematically precise the concepts of “arbitrarily small” and
“close” In Section 4, we will consider a different approach to capturing the concept of
continuity.
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Three Examples

Example 3.1 For each number x, define f(x) = x2 — 2x + 4. Then the function
f:R — R s continuous. To verify this, we select a point xp in R, and we will show
that the function is continuous at xo. Let {x,} be a sequence that converges to xg.
By the sum and product properties of convergent sequences,

lim f(x,) = Hm [x? — 2x, +4] = x} — 2x0 + 4 = f(x0).
n—oo n—>oo

Thus, f is continuous at xg. M

The above example is a special case of the continuity of polynomials. The Poly-
nomial Property of convergent sequences stated in Section 2.1 is a statement of the
continuity of polynomials.

.Example 3.2 Define the function f:R — R by

1 ifx>0
f(x)z{z if x < 0.
y
y=fx)

FIGURE 3.1 The function f : R — R is not continuous at x = 0.

The function f:R — R is continuous at each point xy except for xo = 0. First.

consider xo = 0. The sequence ({—1/n} converges to 0. But { f (—1/n)} is aconstant
sequence having all terms equal to 2. Thus,

Jim f(~1/n) =2# 1= f(0),

and so f is not continuous at xo = 0. Now consider xo # 0. If a sequence {x,}
converges to X, then there is an index N such that

Fxn) = fxo) for all indices n > N.

Thus,
lim f(x,) = £ (x0),
n—oQ
and so f is continuous at the point xg. u
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Example 3.3 Define the function f:R — Rby

if x is rational
if x is irrational.

ro={,

This function is called Dirichlet’s function. There is no point xp in R at which
Dirichlet’s function is continuous. Indeed, given a point x; in R, by the sequential
density of the rationals and irrationals (recall Theorem 2.20), there is a sequence {u,}
of rational numbers that converges to x, and also a sequence. {v,} of irrational
numbers that converges to xo. But { f (1,)} is a constant sequence all of whose terms
equal 1 while {f(v,)} is a constant sequence all of whose terms equal 0. Thus,

Jim f(ua) =1#0= lim f(v,).

Since both of the sequences {u,} and {v,} converge to xo, it is not possible for f
to be continuous at xo. Observe that one expression of the discontinuous nature of
Dirichlet’s function is that there is no way to graph it. .

Sums, Products, and Quotients
of Continuous Functions

Given two functions f: D — R and g: D — R, we define the sum f + g: D — R and
the product fg: D — R by

(f+®) =fGx)+gkx) and (fe)x) = f(x)gx) forallxin D.
Moreover, if g(x) 5 0 for all x in D, the quotient f/g: D — R is defined by

(fle)x) = f—(ic-)- forall x in D.

g(x)

The following theorem is an analog, and also a consequence, of the sum, product, and
quotient properties of convergent sequences.

Theorem 3.4 Suppose that the functions f: D — R and g: D — R are continuous at
the point xg in D. Then the sum

f -+ g: D — Ris continuous at xo, @B.1D
the product .
fg: D — Ris continuous at xg, (3.2)
and, if g(x) s 0 for all x in D, the qubtient
f/g: D — Ris continuous at xg. 3.3)

Proof
Let {x,} be a sequence in D that converges to xy. By the definition of continuity,

lim f(x.) = f(xa) and lim of(x.) == o(xa).
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The sum property of convergent sequences implies that
JBim [f(xa) + g(xn)] = f(x0) + g(x0), (3.4)
and the product property of convergent sequences implies that
Tim [ £ ()8 0] = f (x0)g(xo)- (35)

If g(x) # 0 for all x in D, the quotient property of convergent sequences 1mp11es
that

f(xn) f (xo) ‘
. 3.6
"-P& ) | g(xo) 3.6

By the definition of continuity, (3.1), (3 2), and (3.3) follow from (3.4), (3.5), and
(3.6), respectlvely : .

The Polynomial Property for convergent sequences stated in Section 2.1 is precisely
the assertion that a polynomial is continuous. Thus, by the quotient property for contin-
uous functions, we have the following corollary describing a general class of continuous
functions.

Corollary 3.5 Let p:R — R and g:R — R be polynomials. Then the quotient
p/q: D — R is continuous, where D = {x in R |g(x) # 0}.

Compositions of Continuous Functions

In addition to forming the sum, product, and quotient of functions, there is another useful
way to combine functions: They can be composed.

Definition For functions f:D — R and g:U — R such that f(D) iscon-

tained in U, we define the composition of f: D — R with g:U — R, denoted by*

gof:D— R, by
(g0 N(x) = g(f(x)) fo} allxin D.

‘We have the following composition property for continuous functions.

Theorem 3.6 For functions f: D — R and g: U — R such that f({D) is contained in

U, suppose that f: D — R is continuous at the point xyin D and g: U — R is:

continuous at the point f(xp). Then the composition

gof:D—>R

¢
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Proof

Let {x,} be a sequence in D that converges to xp. By the continuity of the function
f:D — R at the point xo, the sequence {f(x,)} converges to f(xo). But then
{f (xn)}isasequencein U thatconvergesto f (o), so by the continuity of g: U — R
at the point f (xp), the sequence {g(f(x,))} converges to g(f (xp)); that is,

Jim (g 0 (%) = (g 0 f)(x0).

Thus, the composition g o f is continuous at x. "

EXERCISES FOR SECTION 3.1
1 For each of the following statements, determine whether it is true or false and justify

your answer.

a. If the function f + g:R > R is continuous, then the functions f : R — R and
g:R — R also are continuous.

b. If the function f%: R — R is continuous, then so is the function f: R — R.

c. If the functions f 4 g:R and g: R — R are continuous, then so is the function
fR—>R.

d. Every function f:N — R is continuous, where N denotes the set of natural
numbers.

2. Define
11 f0<x<1
F@ = { if1<x<2
At what points is the function f: [0, 2] — R continuous? Justify your answer.
3. Define
x? ifx <0

f@ = {x+1 ifx > 0.

At what points is the function f:R — R continuous? Justify your answer.

4. For a function f: D — R and a point xo in D, define A = {x in D |x > xo} and
B = {xin D|x < xp}. Prove that f: D — R is continuous at xo if and only if
f:A— Rand f: B — R are continuous at x.

5. Define
x? ifx >0
f® = {x ifx <O.

Prove that the function f:R — R is continuous. (Hint: Use Exercise 4.)

6. Define the function g : R — R by
2
x
g(x) = {_ 2

X

ifx is rati‘onal
if x is irrational.

At what points is the function continuous? Justify your answer.
7. Suppose that the function f: [0, 1] — R is continuous and that

fx)=2 if 0<x <1
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8. Suppose that the function f : [0, 1) — R is continuous and that
fx)>2 if 0<x<l

Is it necessarily the case that f(1) > 2?7

. Suppose that the function f : R — Riscontinuous at the point xo and that f (xg) > 0.
Prove that there is an interval I = (xo— 1/n, xo+ 1/n), where n is a natural number,
such that f(x) > O for all x in I. (Hint: Argue by contradiction.)

10. Suppose that the function f : R — R is continuous at the point xo. Prove that there
is an interval I = (x¢ — 1/n, xo + 1/n), where n is a natural number, such that
f(x) < nforall x in I. (Hint: Argue by contradiction.)

11. Suppose that the function g: R — R is continuous and that g(x) = 0if x is rational.
Prove that g(x) = O forall x in R.

12. Let the function f: D — R be continuous. Then define the function | f|: D — Rby
I £1(x) = | f(x)| for x in D. Prove that the function | f|: D — R also is continuous.

13. A function f:D - R is said to be a Lipschizz function provided that there is a
nonnegative number C such that

1 f@) = fW)| < Clu— v for all # and v in D.

o

Use the Comparison Lemma of Section 2.1 to show that a Lipschitz function is
continuous.

14. Suppose that the function f:R — R has the property that ..
fu+v)=f@+ f) foralluandv.
a, Define m = f(1). Prove that
fx) =mx for all rational numbers x.
b. Use (a) to prove that if f:R — R is continuous, then
fx) =mx for all x.

3.2 THE EXTREME VALUE THEOREM

For a function f : D — R, we define
fD)y={yly=f(x) forsomezxinD}

and call the set f(D) the image of the function f:D — R. We say that the function
f: D — Rattains a maximum value provided that its image f (D) has a maximum; that
is, there is a point xq in D such that

F(x) < fx) forall x in D.

We will call such a point xg in D a maximizer of the function f: D — R. Similarly, the
function f: D — R is said to attain a minimum value provided that its image f(D) has
a minimum; a point in D at which this minimum value is attained is called a minimizer
of the function f: D — R.
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In general, a nonempty set has a maximum provided that the set is bounded above
and contains its supremum. Thus, a function f : D — R has a maximum precisely when
the image f(D) is bounded above and the supremum of the image is a functional value.

In general, no assertion can be made concerning the existence of a minimum or
maximum value for a function f: D — R.

Example 3.7 Define the function f:(0,1) — R by f(x) = 2x forall x in (0, 1).
This function does not have a maximum value since no matter what xp in (0, 1)
is chosen, all the points in the interval (xg, 1) have functional values greater than
J (xo). Observe that the image is bounded above with supremum 2 but that 2 is not
attained as a functional value.

y

y=2x 0<x<1

~

FIGURE 3.2  The supremun of the image is not a functional value. n

Example 3.8 Define the function f : (0, 1) — R by f(x) = 1/x for all x in (0, 1). For
each natural number n, f(1/n) = n, so the image is not even bounded above. Thus,
the function certainly cannot attain a maximum value.

Y

y=fx= % 0<x<1

T~

— *
1

FIGURE 3.3  The image of the function f(x) = 1/x on (0, 1] is not bounded above. -

However, in the case that the domain D is a closed bounded interval [a, b] and the
function f:la. b1 — R is continuous. we have the following important resuit.
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¢. Prove that if the point xp in D is a limit point of D, then a function f: D — Ris
continuous at xq if and only if lim,_,,, f(x) = f(x0).
9. Suppose the function f:R — R has the property that there is some M > 0 such
that

|f ()] < M|x)? for all x.

Prove that

. fo)
i = — =0
=0 amd  lmT

10. For each number x, define f(x) to be the largest integer that is less than or equal
to x. Graph the function f: R — R. Given a number xo, examine

Em f(x).

x-—>xg

11. Let k be a natural number. Prove that
. oxF—1
lim =k.
=1 x =1
12. (A General Monotone Convergence Principle.) Let ¢ and b be numbers witha < b
andset ] = (a, b). Suppose that the function f: I — R is monotonically increasing

and bounded. Prove that lim,_,, f(x) exists.

CHAPTER

A

DIFFERENTIATION

4.1 THE ALGEBRA OF DERIVATIVES

The simplest type of function f:R — R is one whose graph is a line. For such a

"function, the ratio

Fx) — f(x)

X1 — Xy

where x; # x», does not depend on the choice of points x; and x,. We denote this ratio
by m and call m the slope of the graph of f. So a function f whose graph is a line is
completely determined by prescribing its functional value at one point, say at xp, and
then prescribing its slope m; it is then defined by the formula

Fx) = flxo) +m(x —xp)  forallx. @.1)

For a function whose graph is not a line, it makes no sense to speak of “the slope
of the graph.” However, many functions have the property that at certain points on their
graph, the graph can be approximated, in a sense that we will soon make precise, by a
tangent line. One then defines the slope of the graph at that point to be the slope of the
tangent line. The slope will vary from point to poeint, and when we can determine the
slope at each point we have very useful information for analyzing the function. This is
the basic geometric idea behind differentiation.!

An open interval I = (a, b) that contains the point x, is called a neighborhood
of X0

! We will prove a version of formula (4.1) for differentiable functions whose graphs are not lines;"

it is called the First Fundamental Theorem (Integrating Derivatives): For a differentiable function
f :R — R whose derivative is continuous, formula (4.1) becomes

f@x) = f(x) + / i) de for all x.
x0

The svmhnls and the farmnla will he exnlained in Chanter &
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Tangent Lines and Derivatives

To make the above precise, we need to define the fangent line. For a function f: I — R,
where 7 is a neighborhood of the point xg, observe that for a point x in 7, with x # xo,
the slope of the line joining the points (xo, f(xo)) and (x, f(x)) is

F(x) = fxo)
X —X )
y
(x, fO) Y=
Sf(x) = flxg)
(x0, f0x0)) o7

&
Y

FIGURE 4.1  Approximation of the slope of the tangent line at the point (xp, f (x0)).
It is reasonable to expect that if there is a tangent line to the graph of f:/ > Rat
(x0, f(x0)), which has a slope m, then one should have

lim fO) = fGxa) _ o

X=Xy X — Xp

For a number xo, an open interval I = (a, b) that contains xq is called a neighborhood
of X0. |

Definition Let I be a neighborhood of xo. Then the function f:7 — R is said to be
differentiable at xo provided that

i £ = £C)

4.2)
x—>x0 X — Xo .

exists, in which case we denote this limit by f'(xp) and call it the derivative of f at xo;
that is,

Fxg) = lim LB =S “3)

X=X X —Xp

If the function f: I — R is differentiable at every point in I, we say that f is differen-
tiable and call the function f/: I — R the derivative of f.
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For a function f : I — R that is differentiable at xo, we call the line determined by
the equation

y = fxo) -+ f'(x0)(x — xp), for all x,

the tangent line to the graph of f at the point.(xo, f(xo)).

¥ = flxg) + flep)x — xp)

FIGURE 4.2  The tangent line to the graph of f at the point (xo, f (x0)).

Observe that since lim,_, ) [x — xo] = 0, we cannot use the quotient formula for
limits in the determination of differentiability. To overcome this obstacle, in this and the
next section we will develop techniques for evaluating limits of the type (4.2), which
are referred to as differentiation rules. Before turning to these, we will consider some
specific examples.

Three Examples
Example 4.1 Define f(x) = mx + b for all x. Then f :R — R is differentiable and

ff&x)=m for all x.

Indeed, for xp in R,

fO) = FGo) _mGx—x0) _

m if x  xo.

X —Xp X — X0
Thus,
lim f@&) — fxo) =limm=m .
X—=>xp X — X X=X
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Example 4.2 Consider the simplest polynomial whose graph is not a line. Define
fx)y= x2 for all x. Then f:R — R is differentiable and

Fx)y=2x for all x.
Indeed, for xg in R, by the difference of squares formula,

fo) = f) _ x%—x2 _ O = x0)(x +x0) —x+4xg  ifx %

X —Xp X = X0 X — Xo
Thus,
(o) = lim LAC b A N, {x + xo] = 2xo. .
X=>X0 X — Xy X=>Xp

Example 4.3 Define f(x) = |x| for all x. Then f:R — R is not differentiable at
x = 0. To see this, observe that

@ -fO _ Pl

=1 ifx >0,

x—0 x

while
M=ﬂ=_1 ifx <0.

x=0 x

It follows that
fO-FO _ fO = fO _
x=>0,x>0 x—0 x—+0,x>0 x—0

Thus,

does not exist.

limf(x)—(j;(o)

x—0 X -

It is easy to see that if x # 0, then f is differentiable at x, and f'(x) = 1ifx > 0,
while f'(x) = —1ifx < 0. a

Differentiating Positive Integral Powers

Proposition 4.4 For a natural number », define f(x) = x" for all x. Then the function
f :R — Ris differentiable and

Flx) = nx™! for all x.

Proof
Fix a number xg. Observe that by the difference of powers formula,

X —xt = (=) (x4 xE 2427 forall x,
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and hence

FO) = fGw) _

LA N SR e R Sk if x 2 x,.
X — Xg

Observe that there are 7 terms on the right-hand side and that each has x{ ! as its
limit as x approaches xo. Thus, by the sum property of limits,

i T =IO _
xox X —Xp

Differentiable Functions are Continuous

Proposition 4.5 Let I be a neighborhood of x, and suppose that the function £ : 7 — R
is differentiable at xy. Then f is continuous at x;.

Proof
Since

lim Fx) = fxo)

= f'(xp) and  lim[x — x] =0,
x>0 X — X0 xxp

it follows from the product property of limits that

limt£) = £ = fim [ L2ZLE0 ] = e 020
Thus, lim,_,,, f(x) = f(x), which means that f is continuous at xo. .

As Example 4.3 shows, it is not true that continuity of a function at a point implies
the differentiability of the function at that point.
Differentiating Sums, Products, and Quotients

Theorem 4.6 Let I be a neighborhood of x and suppose that the functions f:7 — R
and g: I — R are differentiable at x,. Then

i. the sum f + g:I — R is differentiable at x, and
(f + &) (x0) = f'(x0) + &' (0);
il. the product fg:I — R is differentiable at x; and
(f8) (x0) = f(x0)g (x0) + f'(x0)g (x0);
iii. if g(x) # O for all x in I, then the reciprocal 1/g:I — R is differentiable

at xg and
1\ =g,
<g> ) = Gean?

and
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iv. if g(x) 5 O for all x in I, then the quotient f/g:I — R is differentiable
at xo and

( [)' (x0) = EG0F'(x0) = [ (o) (x)
g) " (g(x0))? '

Proof of (i)
For x in I, with x # xp,
(f+8)x) = (f +8)(x0p) _ S~ fxo) n 8(x) — g(xo)

X — Xp X — Xp X — X

Hence, by the definition of derivative and the sum property of limits,

lim 8@ — (f +8)(x0)

x—>xg X — Xo

= f'(x0) + & (x0). .

Proof of (ii)
In this proof; observe that in order to facilitate factorization, in the numerator we
subtract and add the term f(x)g(xo). For x in I, with x # xg,

(f8)(x) — (f8)(xo) _ f(x)g(x) — £ (x0)8(x0)

X — Xg X — Xg
- f&®)g&) — F(x)g(xo) + f(x)g(x0) — £ (x0)8(x0)
X — Xg
= () [g(x) g(xo)] +g T{f(x) f(xo)}
X0 — X0

Since differentiability implies continuity, lim,,,, f(x) = f(xo). Consequently,
using the definition of derivative and the sum and product properties for limits,

tim S8 — (f&)(x0)

X—>X0 X —Xp

= fx0)g (x0) + g(x0) f' (%0). »

Proof of (i)
For x in I, with x # xo,

(1/8)x) — (1/g)(x0) _ 1/8(x) = 1/g(x0)

X —~ X9 X = X0
__ 1, [g(xo) - g(x)]
8(x)g(xo) X=X
_ -l [g(x) - 8(%)]
T gty | x—x |

Since differentiability implies continuity, lim,_, ., g(x) = g(x;). Hence we can
use the definition of derivative, together with.the product and quotient properties of
limits, to conclude from the preceding identity that

[(1/3)(35) - (l/g)(xo)] —&'(x0) “

lim
X —Xxo (gx0))?”

X—>xp
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Proof of (iv)
For x in I, with x 3 xp, observe that
(x) 1
10 _ L fw,
gx) ~ gx)
The quotient formula for derivatives now follows from parts (ii) and (iii). .

Proposition 4.7 For an integer n, define the set O tobe Rifn > O andtobe {(x in R |
x # 0} if n < 0. Then define

Fx)=x" forall x in O.
The function f;: @ — R is differentiable, and
f'(x)=nx"1 forallxin O.

Proof
The case in which » > 0 is precisely Proposition 4.4, so we need only consider the
casen < 0. Butifn < 0, then

1
f_(x)=;_—"' for all x in O,

where —n is a natural number. Then from Proposition 4.4 and the formula for
differentiating the reciprocal of a differentiable function {part (iii) of Theorem 4.6],
it follows that f : O — R is differentiable and

o —l(=mxY
flx) = _'—‘(;_,,)2—

=nx""  forallxin O, .

Corollary 4.8 For polynomials p:R — R and g:R — R, define the set O to be
{xinR | g(x) # 0}. Then the quotient p/g : © — R is differentiable.

Proof

From Proposition 4.4 and parts (i) and (ii) of Theorem 4.6 it follows that both
p:R — Randg:R — R are differentiable. Then part (iv) of Theorem 4.6 implies
that p/q : O — R is differentiable, ~

EXERCISES FOR SECTION 4.1
1. For each of the following statements, determine whether it is true or false and justify
your answer.
a. If the function f :R — R is continuous at xo, then it is differentiable at x.
b. If the function f:R — R is differentiable at xg, then it is continuous at xg.
¢. The function f:R — R 1s differentiable if the function f2:R — R is
differentiable.
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Define f(x) = x> + 2x + 1 for all x. Find the equation of the tangent line to the
graph of f:R — R at the point (2, 13).

For m, and m, numbers, with m; # m,, define

mx +4 ifx<0
f(x)—_ max + 4 ifx = 0.

Prove that the function f : R — R is continuous but not differentiable at x = 0.

4, Use the definition of derivative to compute the derivative of the following functions

atx = 1:

a f(x)=+x+1forallx > 0.
b. f(x) =x*+2x forall x.

e f(x) =1/(1+ x?) forall x.

5. Evaluate the following limits or determine that they do not exist:
2

. X
a. hmx—)O;‘
2.1
b. lim, :;;_ -
. x—1
¢. lim,_,o o
x*—16

d. lim,_,» o)

. Let I and J be open intervals, and the functions f:7 — Randh:J — Rhave the

property that 2(J) € I, so the composition f o h:J — R is defined. Show that if
xgisin J, k:J — R is continuous at xo, A(x) 5% h(xg) if x # xg, and f:I - R
is differentiable at 2 (xg), then

i L ROD = Fh(xo))

b = ey F(hx0)).

. Use Exercise 6 to show that if £ : R — R is differentiable at xo = 1, then:
- f(@
a. limyo fa +hf)¢ fQ _ £
. fWH-fQ _

b. llm,._, ﬁ— 1 f (1)
2

o limy, L =SD (xx) { D _ ra )
2y

d. lim,,; f-(f—)lﬂ =2f'(1)
3

e, lim,_, M =3f(1).

(Hint: For the last two limits, first make use of the difference of powers formula.)

8. For a natural number n > 2, define

ifx > 0.

0 ifx<0
f(x)={ "
x
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. Suppose that the function f:R — R has the property that

—x*< f(x) <x* forallx.

Prove that f is differentiable at x = 0 and that f/(0) = 0.

. For real numbers a and b, define

) = 3x? ifx<1
g = a+ bx ifx > 1.

For what values of ¢ and b is the function g : R — R differentiable at x = 1?

. Suppose that the function g : R — R is differentiable at x = 0. Also, suppose that

for each natural number n, g(1/n) = 0. Prove that g(0) = 0 and g'(0) = 0

. Suppose that the function f : R — Ris differentiable and monotonically increasing.

Show that f'(x) > 0 for all x-.

. Suppose that the function f:R — R is differentiable and that there is a bounded

sequence {x,} with x, 7# X, if n 3 m, such that f(x,) = O for every index n.
Show that there is a point xq at which f(x) = 0 and f/(x) = 0. (Hint: Use the
Sequential Compactness Theorem.)

. Suppose that the function f : R — R is differentiable at x. Analyze the limit

i S G ) = Fo =)

h—0 h

[Hint: Subtract and add f (xp) to the numerator.]

. Suppose that the function f :R — R is differentiable at xo. Prove that

im X (0) = %0 f (x)

x-—»xo X — Xp

= f(x0) — Xof'(xo).

. Let the function f : R — R be differentiable at x = 0. Prove that

2y _
lim £80 = f©)

x—=>0 X

=0.

. Suppose that the function f:R — R is differentiable at 0. For real numbers

a, b, and ¢, with ¢ # 0, prove that

i F@0) = ) _ [a - b} s

x—=0 cxX

. Let the function 4 : R — R be bounded. Define the function f : R — R by

&) =1+4x+x%n(x) forallx.

Prove that F(0) = 1 and (0N = 4. (Note: There is no assnmntion ahant the
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any positive irrational number z; for instance, choose z = +/2. By the density of the
rationals there is a rational number x in the interval (a/z, b/z) so that zx lies in
the interval (a, b) and zx is irrational since it is the product of an irrational number
and a rational number. .

EXERCISES FOR SECTION 1.2

1. For each of the following statements, determine whether it is true or false and justify,
your answer. .
a. The set Z of integers is dense in R.
b. The set of positive real numbers is dense in R.
c. The set Q@ \ N of rational numbers that are not integers is dense in R.

2. Suppose that § is a nonempty set of integers that is bounded below. Show that S has
a minimum. In particular, conclude that every nonempty set of natural numbers
has a minimum.

Let S be a nonempty set of real numbers that is bounded below. Prove that the set S
has a minimum if and only if the number inf S belongs to S.

3

&

4. For each of the following two sets, find the maximum; minimum, infimum, and
supremunm if they are defined. Justify your conclusions. ’
a, {1/n|ninN}
b. {xinR|x? <2}

5. Suppose that the number a has the property that for every naturalnumbern,a < 1/n.
Prove thata < 0.

6. Given a real number a, define S = {x | x in @, x < a}. Prove thata = sup S.

7. Show that for any real number ¢, there is exactly one integer in the interval (¢, c+11.

8. Show that the Archimedean Property is a consequence of the assertion that for any
real number c, there is an integer in the interval [c, ¢ + 1).

9. Show that the Archimedean Property is a consequence of the assertion that every
interval (a, b) contains a rational number.

1.3 INEQUALITIES AND IDENTITIES

Recall that for a real number x, its absolute value, denoted by |x|, is defined by

x| = X ifx>0
I ifx <0.

Directly from this definition and from the Posifivity Axioms for R, it follows that if ¢
and d are any numbers such that d > 0, then :

lel <d ifandonlyif —d <c¢ <d. (1.6)
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Moreover, we also have, for any number x,
—|x| = x < |x). Qa7

Given a pair of real numbers a and b, we often need to estimate the size of |a -+ b).
The following inequality is a basic tool.

Theorem 1.11 The Triangle Inequality For any pair of numbers a and b,
la +b| < la| +1b|.

Proof
Using (1.6), we see that the Triangle Inequality is equivalent to the assertion that

—lal — bl <a+b <|al+ |b|. (1.8)
However, setting x = a and then x = b in (1.7), we have
‘—lal<a<lal and —lbl <& < |5

from which, by addition, we obtain (1.8) and hence the Triangle Inequality. »
It is useful to explicitly record the following proposition.
Proposition 1.12 Foranumber a and a positive number r, the following three assertions
about a number x are equivalent:
ilx—al<r

fi.a—r<x<a+r
iii. x belongs to the open interval (a —r, a +r).

Proof
The equivalence of (i) and (ii) follows from (1.6), while the equivalence of (ii) and
(iii) is simply the very definition of the interval (@ —r, a +71). .

At the heart of many argurnents in analysis lies the problem of estimating the sizes of
various quotients, differences, and sums and of simplifying various algebraic expressions.
As a companion tool to the Triangle Inequality we now establish three useful algebraic
identities.

For a natural number # and any number a, as usual, we write a” to denote the product
of ¢ multiplied by itself n times.
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Observe that we have the following formulas for the difference of squares and the
difference of cubes:

P —b=@~b)a+b) and o —b=(a—b)a®+ab+b).

These are special cases of the following formula.

The Difference of Powers Formula

For any natural number n-and any numbers a and b,
a"—b =(@—b)@ " +a" b+ +ab"r+ b,
It is easy to verify this formula just by expanding the right-hand side. Indeed,

(a— b)(a"'1 +a 4+ ab™? + b1y
=ad"+a" b+a" -+ a2b"2 4 ab™!
Y I e ) ab® ! — b
=a" - b".
In the Difference of Powers Formula, if we take a = 1, setb = r # 1, and replace n

by n + 1, then after division by 1 — T we obtain the following important identity.

The Geometric Sum Formula

For any natural number n and any numberr # 1,

1 — pntt
ldr+rgogrm=rl

1—r

This formula is the essential tool underlying the frequent possibility of expressing
functions as power series that we will consider in Chapters 8 and 9. It also plays an
essential role in verifying many computational algorithms.

It will be useful to have a formula that expresses powers of the sum of the numbers
@ and b in terms of the powers of a and of b. In order to state this formula, we need to
introduce factorial notation. For each natural number r, we define the symbol n!, which
is called # factorial, as follows; We define 1! = 1, and if k is any natural number for which
k!has been defined, we then define (k+1)! = (k4 1)k!. By the Principle of Mathematical
Induction, the symbol n! is defined for all natural numbers #. It is convenient to define
0! = 1. We also need to introduce, for each pair of nonnegative integers » and k such
that n > k, the binomial coefficient (), which is defined by the formula

n\ _ n! -

k) kl(n—k)
We have the following formula for (a + b)", a proof of which is outlined in Exercises 21
and 22.
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The Binomial Formula

For each natural number n and each pair of numbers a and b,

n n _ n n n
byt = n n—1 n~232 4 .. n—1 n
(a+b) (O)a + <1>a b+ <2)a b4+ (n— 1>ab + (n>b .

We close this discussion on algebraic identities by recalling the summation notation.
For a natural number n and numbers ay, a1, . .. , a,, we define

n
Ya=atat-+a.
k=0
This notation shortens many formulas. For instance, using this summation notation, the
three algebraic formulas we have described become the following.

The Difference of Powers Formula
n-1
a"—b"=(a—b)y a" 'k,
k=0
The Geometric Sum Formula

1 —pntl

Sork= ifr# 1.
= 1—r

The Binomial Formula

e ()

k=0

EXERCISES FOR SECTION 1.3
1. Write out the Difference of Powers Formula explicitly forn = 4 and 5.

2. Write out the Binomial Formula explicitly for n = 2, 3, and 4.

3. Show that the Triangle Inequality becomes an equality if a and b are of the same
sign.

4. Leta > 0. Prove thatif x is a number such that |x — a} < a/2, then x > a/2.

5. Let b < 0. Prove that if x is a number such that |x — b| < |b|/2, then x < b/2.

6. Which of the following inequalities- hold for all numbers a and b? Justify your
conclusions.
a. la+b| = |a| + |b|.
b. |a +b| < |a| — |b].

7. By wiiting @ = (a + b) + (—b) use the Triangle Inequality to obtain |a| — |b} <
la + b|. Then interchange a and b to show that

{lal — 161l < la + bl
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10.

11.

12,

13.

14.

15.

16.

17.
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Then replace b by —b to obtain
llal = 6]} < |a — bI-

Let a and b be numbers such that |g — b| < 1. Prove that |a} < |b| + 1.

. For anatural number 7 and any two nonnegative numbers g and b, use the Difference

of Powers Formula to prove that
a<bh if and only if o" < b".
For a natural number » and numbers a and b such that a = b > 0, prove that
a* — b > nb" Ya — b).

(Bernoulli’s Inequality) Show -that for a natural number #» and a nonnegative
number b,
1+ > 1+nb.

(Hint: In the Binomial Formula, seta = 1.)

Use the Principle of Mathematical Induction to provide a direct proof of Bernoulli’s
Inequality for all b > —1, not just for the case where b > 0 which, as outlined in
Exercise 11 follows from the Binomial Formula.

For a natural number # and a nonnegative number b show that
— 1
A+b) = 14+nb+ 20Dy

(Cauchy’s Inequality) Using the fact that the square of a real number is nonnegative,
prove that for any numbers a and b,

1 .
ab < E(a2 +b%).

Use Cauchy’s Inequality to prove thatif a > 0 and b > 0, then

Vab < %(a+b).

Use Cauchy’s Inequality to show that for any numbers a and & and a natural
number , ¢

ab < 1 (na2 + lb2>.
2 n

(Hint: Replace a by +/na and b by b/./n in Cauchy’s Inequality.)

Let a, b, and c be nonnegative numbers. Prove the following inequalities:
a. ab+bc+ca <a*+ b+ 2

b. 8abc < (a + b)(b + c)(c +a).

¢ abc(a + b +c) < a?b? + b2c? + c*a?.

18.

19.

20.

21

.

22.

23.

24.

25.
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A function f: R — R is called strictly increasing provided that f(u) > f(v) for

all numbers u and v such that u > v.

a. Define p(x) = x3 for all x. Prove that the polynomial p: R - R is strictly
increasing.

b. Fix a number c and define g(x) = x> + cx for all x. Prove that the polynomial
g : R — Ris strictly increasing if and only if ¢ > 0. (Hint: For ¢ < 0, consider
the graph to understand why it is not strictly increasing and then prove it is not
increasing.)

Let n be a natural number and a4, a,, . . ., a, be positive numbers. Prove that

A+a)l+a) - Q+a)zlta+a+---+a,
and that
(a;+a2+---+an)(a1_1+a2'_1+-~-+a,,'1) = nk
Use the Geometric Sum Formula to find a formula for
1 1 1
a. m+m+---+m.
b. Also, show that if ¢ # 0, then

3
it a—p+a-ar+ 4297
a a

Prove that if n and k are natural numbers such that Xk < n, then

(nzl) - (kf1>+<2)

Use the formula in Exercise 21 to provide an inductive proof of the Binomial
Formula.

Let a be a nonzero number and 7 and » be integers. Prove the following equalities:

a. am+n — amait.

b. (ab)" = a™b".

A natural nurnber # is called even if it can be written as n = 2k for some other

natural number k, and is called odd if either n = 1 or n = 2k + 1 for some other

natural number k.

a. Prove that each natural number # is either odd or even.

b. Prove that if m is a natural number, then 2m > 1.

¢. Prove that a natural number » cannot be both odd and even. (Hint: Use
part (b).) “

d. Suppose that k;, k5, £;, and £, are natural numbers such that £; and £, are odd.
Prove that if 2914, = 2%2¢,, then k; = k, and £, = £,.

a. Prove that if # is a natural number, then 2" > n.

b. Prove that if # is a natural number, then

n= 2""150



