1. Prove if $x, y \in \mathbb{R}$ are positive then $\sqrt{x+y} \neq \sqrt{x} + \sqrt{y}$.

2. Prove that there is no positive integer n satisfying $2n < n^2 < 3n$.

- 3. Two of the following are false and one is true. Prove the true one by contradiction and provide counterexamples for the false ones.
 - (a) If $n^2 + 3n$ is even then n is odd.
 - (b) If $a \ge 2$ and b are integers then $a \nmid b$ or $a \nmid (b+1)$.
 - (c) If $A \not\subseteq B$ then $A \cap B = \emptyset$.