- 1. Prove if $x, y \in \mathbb{R}$ are positive then $\sqrt{x+y} \neq \sqrt{x} + \sqrt{y}$. **Proof:** Assume by way of contradiction that there exist $x \in \mathbb{R}$ which are positive and $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$. Squaring both sides leads to $x + y = x + 2\sqrt{xy} + y$ which reduces to $2\sqrt{xy} = 0$ or xy = 0 which is impossible. $\ddot{\Box}$
- 2. Prove that there is no positive integer n satisfying $2n < n^2 < 3n$. **Proof:** Assume by way of contradiction that there is such an n. Then if we have $2n < n^2 < 3n$ we can divide by n to get 2 < n < 3 which is impossible for an integer. $\ddot{\Box}$
- 3. Two of the following are false and one is true. Prove the true one by contradiction and provide counterexamples for the false ones.
 - (a) If $n^2 + 3n$ is even then n is odd. **Counterexample:** If n = 0 then $n^2 + 3n = 0$ is even but n is even.
 - (b) If $a \ge 2$ and b are integers then $a \nmid b$ or $a \nmid (b+1)$. **Proof:** Assume that there exists $a \ge 2$ and b, both integers, with $a \mid b$ and $a \mid b+1$. Then the first yields am = b and the second yields an = b + 1 for $m, n \in \mathbb{Z}$. Then

$$an = b + 1$$
$$an = am + 1$$
$$an - am = 1$$
$$a(n - m) = 1$$

From whence it follows (since every one's an integer) that either $a=\pm 1,$ a contradiction. $\ddot{\smile}$

(c) If $A \not\subseteq B$ then $A \cap B = \emptyset$. Counterexample: If $A = \{1, 2\}$ and $B = \{2, 3\}$ then clearly $A \not\subseteq B$ but $A \cap B = \{2\} \neq \emptyset$.