Proof: We have:

Base Case: When n = 1 we check $1(2) = \frac{1(1+1)(1+2)}{3}$ which is true. Inductive Step: We assume $1(2) + 2(3) + 3(4) + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$ and we wish to show $1(2) + 2(3) + 3(4) + \dots + n(n+1) + (n+1)(n+2) = \frac{(n+1)(n+2)(n+3)}{3}$. Observe:

$$1(2) + 2(3) + 3(4) + \dots + n(n+1) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2)$$
 By IH
$$= \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3}$$
$$= \frac{(n+1)(n+2)(n+3)}{3}$$

as desired.

QED

QED

Wednesday 7/25/2012

2. Use induction to prove that $4|(5^n - 1)$ for every nonnegative integer n.

Proof: We have:

Base Case: When n = 0 we check $4|(5^0 - 1)$ which is true.

Inductive Step: We assume $4|(5^n - 1)$ and we wish to show $4|(5^{n+1} - 1)$. Observe that our assumption can be rewritten as $4x = 5^n - 1$ for $x \in \mathbb{Z}$ and then

$$5^{n+1} - 1 = 5 \cdot 5^n - 1 = 5(4x+1) - 1 = 20x + 4 = 4(5x+1)$$

and so $4|(5^{n+1}-1)|$ as desired.

3. Prove that $2^n > n^3$ for every integer $n \ge 10$.

Proof: We have:

Base Case: When n = 10 we check $2^{10} > 10^3$ which is true. Inductive Step: We assume $2^n > n^3$ and we wish to show $2^{n+1} > (n+1)^3$. Observe that

$$2^{n+1} - (n+1)^3 > 2 \cdot 2^n - (n+1)^3 > 2n^3 - (n+1)^3 = n^3 - 3n^2 - 3n - 1 = n(n(n-3) - 3) - 1$$

and then since $n \ge 10$ we know $n-3 \ge 7$ and so $n(n-3)-3 \ge 67$ and so $n(n(n-3)-3)-1 \ge 669$ so that $2^{n+1} - (n+1)^3 \ge 669 > 0$ and we have $2^{n+1} > (n+1)^3$. QED