- 1. Disprove by counterexample:
 - (a) |A| < |B| and A countable implies B countable.

Solution: One counterexample is $A = \mathbb{Z}$ and $B = \mathbb{R}$.

(b) |A| < |B| and B uncountable implies A uncountable.

Solution: One counterexample is $A = \mathbb{Z}$ and $B = \mathbb{R}$.

- 2. For each of the following sets write down a few elements which give a good idea of what sorts of elements each set has. Be creatively interesting.
 - (a) \mathbb{Z}

Solution: 4,5,2,-1,...

(b) $\mathcal{P}(\mathbb{Z})$

Solution: \emptyset , \mathbb{Z} , {1,2,3}, {evens}, {5,6,7,...}

(c) $\mathcal{P}(\mathcal{P}(\mathbb{Z}))$

Solution: \emptyset , {Z, {1, 2}, {{1}, {evens}}

(d) $\mathcal{P}(\mathbb{R})$.

Solution: \emptyset , \mathbb{R} , $\{\pi\}$, \mathbb{Q} , $\{1, 1.1\}$

3. Prove that for $a, b, c, d \in \mathbb{R}$ with a < b and c < d we have |[a, b]| = |[c, d]| by finding an explicit bijection between the sets.

Proof: The easiest bijection is the straight line connecting (a, c) with (b, d). This has slope $\frac{d-c}{b-a}$ and point (a, c) and hence has equation $y - c = \left(\frac{d-c}{b-a}\right)(x-a)$ or

$$f(x) = \left(\frac{d-c}{b-a}\right)(x-a) + c$$

$$QED$$

4. Your hotel now has uncountably infinitely many rooms each numbered with a real number in [0,1] and all full. However uncountably infinitely many guests arrive, each with a number in [0,1]. Explain how you can fit them all in.

Solution: First move the guest in room x to room x/3. At this point rooms [0, 1/3] are full and (1/3, 1] are empty. Then move new guest x to room 0.5x + 0.5.