1. Prove that for $a, b \in \mathbb{R}$ we have $|a| - |b| \le |a + b|$.

Proof: Observe that

$$|a| = |(a + b) + (-b)| \le |a + b| + |-b| = |a + b| + |b|$$

and the result is immediate.

QED

2. Use the Geometric Sum Formula to find a simplified formula for

$$\frac{1}{1+x^2} + \frac{1}{(1+x^2)^2} + \ldots + \frac{1}{(1+x^2)^n}$$

Solution: We have

$$\frac{1}{1+x^2} + \frac{1}{(1+x^2)^2} + \ldots + \frac{1}{(1+x^2)^n} = \frac{1 - (1/(1+x^2))^{n+1}}{1 - (1/(1+x^2))} - 1$$

3. Use a truncated version of the Binomial Theorem to show that for $n \in \mathbb{N}$ and $b \in \mathbb{R}^+$ we have $(1+b)^n \ge 1 + nb + \frac{n(n-1)}{2}b^2$.

Proof: By the Binomial Theorem we have

$$(1+b)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} b^k \ge \binom{n}{0} + \binom{n}{1} b^1 + \binom{n}{2} b^2 = 1 + nb + \frac{n(n-1)}{2} b^2$$

as desired.

\cap)C	1	n
⊻	\mathcal{L}	1	\sim

4. Find the coefficient of x^2y^5 in $(x+y)^7$.

Solution: In the binomial expansion x^2y^5 appears when k = 2 and so that term is

$$\binom{7}{2}x^2y^5$$

so the coefficient is $\binom{7}{2} = 21.$

5. For $n \in \mathbb{N}$ and $a, b \in \mathbb{R}^+$ use the Difference of Powers Formula to show that

$$a \leq b$$
 iff $a^n \leq b^n$

Proof: Equivalently we are trying to show that

$$a-b \leq 0$$
 iff $a^n - b^n \leq 0$.

The difference of square formula states that

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$$

Since $a, b \in \mathbb{R}^+$ the summation part is positive and hence $a^n - b^n$ and a - b have the same sign. Thus one is positive iff the other is.

QED