1. Prove that $ [0,1] \times [0,1] = [0,1] $ by explicitly finding a bijection between the sets and proving it is a bijection.	[10 pts]
2. Let A and B be nonempty sets. Prove that $ A \leq A \times B $.	[5 pts]
3. Find an example of infinite sets A and B with $ A < A \times B $.	[5 pts]
4. Find bijections between the following sets. You can use pictures or explicit functions as long as your argument is clear. You do not need to prove bijectivity.	
(a) \mathbb{Z} and \mathbb{Q}^+	[10 pts]
(b) \mathbb{Q}^+ and \mathbb{Q}	[10 pts]
(c) $\mathbb{N} \times \mathbb{N}$ and $\mathbb{Z} \times \mathbb{Z}$	[10 pts]
5. Show that $\left\{\frac{3n+1}{9n-1}\right\}$ converges to $\frac{1}{3}$.	[10 pts]
6. Show that $\{(-1)^n n^2\}$ does not converge to 3.	[10 pts]
7. Show that $\left\{\frac{4n^3+n^2+3n+1}{n^3}\right\}$ converges to 4.	[10 pts]
8. Prove that if $\{a_n\}$ is a sequence which converges to a and also to b then $a = b$.	

Note: This may seem obvious but the point is to prove it rigorously from the definition. [20 pts]