1. Prove that $|[0,1] \times [0,1]| = |[0,1]|$ by explicitly finding a bijection between the sets and proving [10 pts] it is a bijection.

Solution: We'll define a bijection $f : [0,1] \rightarrow [0,1] \times [0,1]$. For each $a \in [0,1]$ we can write $a = 0.a_1a_2a_3a_4...$ where the a_i are the digits. Note that 1 = 0.9999... and for any other number with multiple representations, like 0.342999... = 0.323000... we use the former representation. Then define

 $f(0.a_1a_2a_3a_4...) = (0.a_1a_3a_5..., 0.a_2a_4a_6...)$

Proof: We need to check it's a bijection:

- Surjectivity: For $(b,c) \in [0,1] \times [0,1]$ we represent these with their decimal expansions: $(b,c) = (0.b_1b_2..., 0.c_1c_2...)$ and then if $a = 0.b_1c_1b_2c_2...$ then $a \in [0,1]$ and f(a) = (b,c) as desired.
- Injective: Suppose f(a) = f(b) meaning $f(0.a_1a_2...) = f(0.b_1b_2...)$ and so $(0.a_1a_3..., 0.a_2a_4...) = (0.b_1b_3..., 0.b_2b_4...)$ and so all the digits match and a = b.

[5 pts]

2. Let A and B be nonempty sets. Prove that $|A| \leq |A \times B|$.

Proof: Let $b_0 \in B$ be fixed. Observe that $f : A \to A \times B$ given by $f(a) = (a, b_0)$ is an injection.

QED

3. Find an example of infinite sets A and B with $|A| < |A \times B|$. [5 pts]

Answer: Let $A = \mathbb{Z}$ and $b = \mathbb{R}$.

4. Find bijections between the following sets. You can use pictures or explicit functions as long as your argument is clear. You do not need to prove bijectivity.

(a)
$$\mathbb{Z}$$
 and \mathbb{Q}^+ [10 pts]

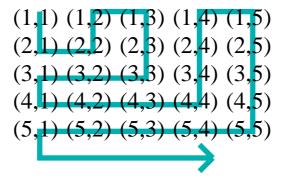
Solution: We know we can enumerate the integers by 0, 1, -1, 2, -2, 3, -3, ... and so we match these value in this order with the snake-diagram from class for enumerating \mathbb{Q}^+ .

(b) \mathbb{Q}^+ and \mathbb{Q} [10 pts]

Solution: We know we can enumerate \mathbb{Q}^+ with the snake diagram so we simply start with 0 and then alternate back and forth between positive and negative values from this listing.

(c) $\mathbb{N} \times \mathbb{N}$ and $\mathbb{Z} \times \mathbb{Z}$

Solution: We saw how to list $\mathbb{N} \times \mathbb{N}$ on the last homework:



And we can do $\mathbb{Z}\times\mathbb{Z}$ by looping around:

(-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3)		(-2,-1) (-1,-1) (0,-1) (1,-1)	(-2,0)	(1,1)	(-2,2) (-1,2) (0,2) (1,2)	$\begin{array}{c} -(-2,3) \\ (-1,3) \\ (0,3) \\ (1,3) \end{array}$
(2,-3)	(2, -2)	(2,-1)	(2,0)	. , ,	(2,2)	(1,3) (2,3) (3,3)

So then what we do is match these together along their orders.

5. Show that $\left\{\frac{3n+1}{9n-1}\right\}$ converges to $\frac{1}{3}$.

Idea: Given ϵ we need to show that there is an N so that for n > N we have

$$\begin{split} \left|\frac{3n+1}{9n-1} - \frac{1}{3}\right| &< \epsilon\\ \frac{3(3n+1) - (9n-1)}{3(9n-1)} \right| &< \epsilon\\ \frac{4}{3(9n-1)} &< \epsilon\\ 9n-1 &> \frac{4}{3\epsilon}\\ n &> \frac{4}{27\epsilon} + \frac{1}{9} \end{split}$$

Proof: For $\epsilon > 0$ we define $N = \left\lceil \frac{4}{27\epsilon} + \frac{1}{9} \right\rceil$. Then for n > N we have

$$\begin{split} n > \frac{4}{27\epsilon} + \frac{1}{9} \\ \frac{4}{3(9n-1)} < \epsilon \\ \left| \frac{3n+1}{9n-1} - \frac{1}{3} \right| < \epsilon \end{split}$$

QED

[10 pts]

6. Show that $\{(-1)^n n^2\}$ does not converge to 3.

Proof: We proceed by contradiction and assume for any $\epsilon > 0$ there is some $N \in \mathbb{N}$ so that n > N implies $|(-1)^n n^2 - 3| < \epsilon$. For n even and greater than 1 this means $n^2 - 3 < \epsilon$ but for $\epsilon = 1$ we get $n^2 < 4$ which contradicts n even and greater than 1.

QED

7. Show that $\left\{\frac{4n^3+n^2+3n+1}{n^3}\right\}$ converges to 4.

Idea: Given ϵ we need to show that there is an N so that for n > N we have

$$\begin{vmatrix} 4 + \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^3} - 4 \end{vmatrix} < \epsilon \\ \begin{vmatrix} \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^3} \end{vmatrix} < \epsilon \\ \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^3} < \epsilon \end{vmatrix}$$

For $n \in \mathbb{N}$ we know that

 $\frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^3} \le \frac{1}{n} + \frac{3}{n} + \frac{1}{n} = \frac{5}{n}$ so so provided we get $\frac{5}{n} < \epsilon$ or $n > \frac{5}{\epsilon}$ we're safe.

Proof: for $\epsilon > 0$ we define $N = \left\lceil \frac{5}{\epsilon} \right\rceil$. Then for n > N we have

$$n > \frac{5}{\epsilon}$$
$$\frac{5}{n} < \epsilon$$
$$\frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^3} < \frac{5}{n} < \epsilon$$
$$\left| 4 + \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^3} - 4 \right| < \epsilon$$

QED

[20 pts]

Note: This may seem obvious but the point is to prove it rigorously from the definition.

8. Prove that if $\{a_n\}$ is a sequence which converges to a and also to b then a = b.

Idea: If $a \neq b$ we choose an ϵ small enough that a_n cannot be both within ϵ of a and within ϵ of b because a and b are apart from one another.

Proof: We proceed by contradiction and assume that $\{a_n\}$ converges to both a and b with $a \neq b$. Without loss of generality use b > a.

By the definition of convergence there is some $N_1 \in \mathbb{N}$ such that for $n > N_1$ we have $|a_n - a| < \frac{b-a}{2}$. This is equivalent to $3a - b < 2a_n < a + b$. Similarly there is some $N_2 \in \mathbb{N}$ such that for $n > N_2$ we have $|a_n - b| < \frac{b-a}{2}$. This is equivalent to $a + b < 2a_n < 3b - a$.

So then for n greater than both of these we have both being true but then we would have $a + b < 2a_n < a + b$ which is impossible.

QED

[10 pts]

[10 pts]