MATH 310: Homework 3 Solutions

1. Suppose $P(A) : A \cap \{1,3\} \neq \emptyset$ and $Q(A) : |A - \{1\}| = 2$. For which $A \in \mathcal{P}(\{1,2,3,4\})$ is the biconditional $P(A) \leftrightarrow Q(A)$ a true statement? Justify your steps, don't just give the answer. **Solution:** We have: P(A) true for $A \in \{\{1\}, \{3\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\}$ $\sim P(A)$ true for $A \in \{\emptyset, \{2\}, \{4\}, \{2,4\}\}.$ We have: Q(A) true for $A \in \{\{1,2,3\}, \{1,3,4\}, \{1,2,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$ $\sim Q(A)$ false for $A \in \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3,4\}, \{1,2,3,4\}\}$

The biconditional is true when either $P(A) \land Q(A)$ or $\sim P(a) \land \sim Q(A)$. The first is true when $A \in \{\{1, 2, 3\}, \{1, 3, 4\}, \{1, 2, 4\}, \{2, 3\}, \{3, 4\}\}$ and the second is true when $A \in \{\emptyset, \{2\}, \{4\}\}$.

Therefore the biconditional is true when $A \in \{\emptyset, \{2\}, \{4\}, \{1, 2, 3\}, \{1, 3, 4\}, \{1, 2, 4\}, \{2, 3\}, \{3, 4\}\}$

2. For statements P and Q show that $((P \to Q) \land (Q \to R)) \to (P \to R)$ is a tautology. Solution: The truth table is as follows:

P	Q	R	$P \to Q$	$Q \to R$	$P \rightarrow R$	$((P \to Q) \land (Q \to R)) \to (P \to R)$	
Т	Т	Т	Т	Т	Т	Т	
Т	Т	F	Т	F	F	Т	
Т	F	Т	F	Т	Т	Т	
F	Т	Т	Т	Т	Т	Т	
Т	F	F	F	Т	F	Т	
F	Т	F	Т	F	Т	Т	
F	F	Т	Т	Т	Т	Т	
F	F	F	Т	Т	Т	Т	

- 3. Determine with justification if the following are true or false.
 - (a) $\forall n \in \mathbb{Z}, \frac{1}{3}(n-2) \in \mathbb{Z}.$ **Result:** False. For example if n = 0 then $\frac{1}{3}(1-2) \notin \mathbb{Z}.$
 - (b) $\exists n \in \mathbb{Z}, \frac{1}{3}(n-2) \in \mathbb{Z}.$ **Result:** True. For example if n = 2 then $\frac{1}{3}(2-2) \in \mathbb{Z}.$
 - (c) $\exists ! n \in \mathbb{Z}, \frac{1}{3}(n-2) \in \mathbb{Z}.$ **Result:** False. For example both n = 2 and n = 5 yield integers.
 - (d) $\exists ! n \in \{0, 1, 2, 3, 4\}, \frac{1}{3}(n-2) \in \mathbb{Z}.$ **Result:** True. Only n = 2 yields an integer.
 - (e) $\forall x \in \mathbb{R}, x^2 + 3 \ge 0.$ Result: True. Since $x^2 \ge 0$ we know $x^2 + 3 \ge 3 > 0.$
 - (f) $\exists x \in \mathbb{R}, x^2 + 3 \ge 0$. **Result:** True. Since every x will work, any x will.
 - (g) $\forall x \in \{1, 2, 3\}, 3x + 1$ is prime. **Result:** False. For example if x = 1 then 3(1) + 1 = 4 is not prime.
 - (h) $\exists x \in \{1, 2, 3\}, 3x + 1$ is prime. True. For example if x = 2 then 3(2) + 1 = 7 is prime. Result:
 - (i) $\exists ! x \in \{1, 2, 3\}, 3x + 1$ is prime. True. Only x = 1 gives a prime number.

P	Q	R	$P \wedge R$	$Q \to (P \land R)$	$(Q \to P) \land R$	$R \lor (P \to Q)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	F	Т
Т	F	Т	Т	Т	Т	Т
F	Т	Т	F	F	F	Т
Т	F	F	F	Т	F	F
F	Т	F	F	F	F	Т
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	F	Т

4. Fill in the following truth table for all possible values of P, Q and R.

- 5. Distribute the negation signs for each of the following, adjusting other symbols accordingly.
 - (a) $\sim (\forall x, P(x) \land P(x+1))$ Solution: $\sim (\forall x, P(x) \land P(x+1)) = \exists x, \sim P(x) \lor \sim P(x+1)$
 - (b) $\sim (\exists x, Q(x) \to Q(x+1))$ Solution: $\sim (\exists x, Q(x) \to Q(x+1)) = \forall x, Q(x) \land \sim Q(x+1)$
 - (c) $\sim (\exists x, \forall y P(x, y) \lor Q(x, y))$ Solution: $\sim (\exists x, \forall y P(x, y) \lor Q(x, y)) = \forall x, \exists y, \sim P(x, y) \land \sim Q(x, y)$
 - (d) $\sim (\forall x, \exists y P(x, y) \land Q(x, y))$ **Solution:** $\sim (\forall x, \exists y P(x, y) \land Q(x, y)) = \exists x, \forall y, \sim P(x, y) \lor \sim Q(x, y)$
 - (e) $\sim (\forall x, \exists y P(x, y) \leftrightarrow Q(x, y))$ **Solution:** $\sim (\forall x, \exists y P(x, y) \leftrightarrow Q(x, y)) = \exists x, \forall y, (P(x, y) \land \sim Q(x, y)) \lor (\sim P(x, y) \land Q(x, y))$
- 6. Assume a_n is a sequence of real numbers. The formal definition that a_n converges to $a_0 \in \mathbb{R}$ as $n \to \infty$ is:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, (n \ge N \to |a_n - a_0| < \epsilon)$$

Negate this statement.

Solution:
$$\sim [\forall \epsilon > 0, \exists N \in \mathbb{N}, (n \ge N \to |a_n - a_0| < \epsilon)] = \exists \epsilon > 0, \forall N \in \mathbb{N}, (n \ge N \land |a_n - a_0| \ge \epsilon)$$

- 7. Negate the following, writing your results in english:
 - (a) There was once a year in which every day was rainy or snowy. **Solution:** Every year has one day which is neither rainy nor snowy.
 - (b) For every week there is at least one day where if it's cloudy then it snows. **Solution:** There was once a week in which all days were cloudy and did not snow.

- 8. Provide proofs with justification of each of the following. Some statistics to help:
 - One is trivially true.
 - One is vacuously true.
 - Two should have direct proofs.
 - Two should have proofs of the contrapositive.
 - One requires an intermediate step by the contrapositive with a link to a direct proof.
 - One requires cases.
 - (a) If $n, m \in \mathbb{Z}$ are both odd then 3n m + 1 is odd. **Proof:** Suppose both are odd, then n = 2k + 1 and m = 2l + 1 with $k, l \in \mathbb{Z}$. Then 3n - m + 1 = 3(2k + 1) - (2l + 1) + 1 = 6k - 2l + 1 = 2(3k - l) + 1 = 2b + 1 with $b = 3k - l \in \mathbb{Z}$ so 3n - m + 1 is odd. $\ddot{\smile}$
 - (b) If n ∈ Z and 3n 7 is odd then n/2 + 1 ∈ Z.
 Lemma: If 3n 7 is odd then n is even.
 Proof of Lemma: Done in class.
 Proof of Problem: If 3n 7 is odd then by the lemma n is even and so n = 2b for b ∈ Z. Then n/2 + 1 = b + 1 ∈ Z as desired. ⊂
 - (c) If $x \in \mathbb{R}$ and $x^2 + 2x \leq 3$ then $-3 \leq x \leq 1$. **Proof:** Suppose $x^2 + 2x \leq 3$. Then $(x+3)(x-1) \leq 0$ so either we have $x+3 \geq 0$ and $x-1 \leq 0$ or we have $x+3 \leq 0$ and $x-1 \geq 0$. In the former case $x \geq -3$ and $x \leq 1$ yielding $-3 \leq x \leq 1$. In the latter case $x \leq -3$ and $x \geq 1$ which is impossible. Thus together we have $-3 \leq x \leq 1$. \because
 - (d) If $x \in \mathbb{R}$ and |x+1| + 1 = 0 then $x^2 = 4$. **Proof:** Vacuously true since |x+1| + 1 = 0 is never true. $\ddot{-}$
 - (e) If $n \in \mathbb{Z}$ and 3n + 1 is odd then n is even. **Proof:** We prove the contrapositive, that if n is odd then 3n + 1 is even. If n is odd then n = 2k + 1 for $k \in \mathbb{Z}$. Then 3n + 1 = 3(2k + 1) + 1 = 6k + 4 = 2(3k + 2) = 2b for $b = 3k + 2 \in \mathbb{Z}$ and so 3n + 1 is even. \because
 - (f) If $n \in \mathbb{Z}$ and $n^2 + n < 0$ then |n+1| + 1 > 0. **Proof:** Trivially true since |n+1| + 1 > 0 for all $n \in \mathbb{Z}$. $\ddot{\smile}$
 - (g) If $n \in \mathbb{Z}$ then $n^2 + n + 1$ is odd. **Proof:** We examine the cases where n is even and odd. Case 1: If n is even then n = 2k for $k \in \mathbb{Z}$ so then $n^2 + n + 1 = (2k)^2 + 2k + 1 = 2(2k^2 + k) + 1$ so $n^2 + n + 1$ is odd. Case 2: If n is odd then n = 2k + 1 for $k \in \mathbb{Z}$ so then $n^2 + n + 1 = (2k + 1)^2 + 2k + 1 + 1 = 2(2k^2 + 3k + 1) + 1$ so $n^2 + n + 1$ is odd. \dddot{i}
 - (h) If f(x) is a function and f'(x) 2f(x) = 0 then $f(x) \neq \sin(2x)$. **Proof:** We prove the contrapositive, tht if $f(x) = \sin(2x)$ then $f'(x) - 2f(x) \neq 0$. If $f(x) = \sin(2x)$ then $f'(x) - 2f(x) = 2\cos(2x) - \sin(2x)$ and this does not equal 0, for example, when x = 0. $\ddot{\smile}$

- 9. Explain why the following proofs fail. Explanations should be in full sentences with minimal notation.
 - (a) Claim: If $x^2 4 = 0$ then x = 2. "Proof": Suppose x = 2. Then $x^2 = 4$ and so $x^2 - 4 = 0$. **Problem:** The "proof" is actually of the converse.
 - (b) Claim: 3 = -3. "Proof": Let x = 3. Then $x^2 = (-x)^2$ so $\sqrt{x^2} = \sqrt{(-x)^2}$ and so canceling the square root and the square yields x = -x and so 3 = -3. **Problem:** The equation $\sqrt{x^2} = x$ is only valid for positive x and so $\sqrt{(-3)^2} \neq -3$.
 - (c) Claim: 1 = -1. "Proof": $1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = i \cdot i = -1$. **Problem:** The equation $\sqrt{xy} = \sqrt{x}\sqrt{y}$ is only valid for positive x, y and so $\sqrt{(-1)(-1)} \neq \sqrt{-1}\sqrt{-1}$.