
MATH 310: Homework 3 Solutions

1. Suppose P (A) : A ∩ {1, 3} 6= ∅ and Q(A) : |A− {1}| = 2. For which A ∈ P({1, 2, 3, 4}) is the
biconditional P (A) ↔ Q(A) a true statement? Justify your steps, don’t just give the answer.
Solution: We have:
P (A) true for A ∈ {{1}, {3}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}
∼ P (A) true for A ∈ {∅, {2}, {4}, {2, 4}}.
We have:
Q(A) true for A ∈ {{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3}, {2, 4}, {3, 4}}
∼ Q(A) false for A ∈ {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}, {1, 2, 3, 4}}

The biconditional is true when either P (A)∧Q(A) or ∼ P (a)∧ ∼ Q(A). The first is true when
A ∈ {{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3}, {3, 4}} and the second is true when A ∈ {∅, {2}, {4}}.

Therefore the biconditional is true whenA ∈ {∅, {2}, {4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3}, {3, 4}}

2. For statements P and Q show that ((P → Q) ∧ (Q → R)) → (P → R) is a tautology.
Solution: The truth table is as follows:

P Q R P → Q Q → R P → R ((P → Q) ∧ (Q → R)) → (P → R)
T T T T T T T
T T F T F F T
T F T F T T T
F T T T T T T
T F F F T F T
F T F T F T T
F F T T T T T
F F F T T T T

3. Determine with justification if the following are true or false.

(a) ∀n ∈ Z, 1

3
(n− 2) ∈ Z.

Result: False. For example if n = 0 then 1

3
(1− 2) 6∈ Z.

(b) ∃n ∈ Z, 1

3
(n− 2) ∈ Z.

Result: True. For example if n = 2 then 1

3
(2− 2) ∈ Z.

(c) ∃!n ∈ Z, 1

3
(n− 2) ∈ Z.

Result: False. For example both n = 2 and n = 5 yield integers.

(d) ∃!n ∈ {0, 1, 2, 3, 4}, 1

3
(n− 2) ∈ Z.

Result: True. Only n = 2 yields an integer.

(e) ∀x ∈ R, x2 + 3 ≥ 0.
Result: True. Since x2 ≥ 0 we know x2 + 3 ≥ 3 > 0.

(f) ∃x ∈ R, x2 + 3 ≥ 0.
Result: True. Since every x will work, any x will.

(g) ∀x ∈ {1, 2, 3}, 3x+ 1 is prime.
Result: False. For example if x = 1 then 3(1) + 1 = 4 is not prime.

(h) ∃x ∈ {1, 2, 3}, 3x+ 1 is prime. True. For example if x = 2 then 3(2) + 1 = 7 is prime.
Result:

(i) ∃!x ∈ {1, 2, 3}, 3x+ 1 is prime. True. Only x = 1 gives a prime number.



4. Fill in the following truth table for all possible values of P , Q and R.

P Q R P ∧R Q → (P ∧R) (Q → P ) ∧R R ∨ (P → Q)

T T T T T T T
T T F F F F T
T F T T T T T
F T T F F F T
T F F F T F F
F T F F F F T
F F T F T T T
F F F F T F T

5. Distribute the negation signs for each of the following, adjusting other symbols accordingly.

(a) ∼ (∀x, P (x) ∧ P (x+ 1))
Solution: ∼ (∀x, P (x) ∧ P (x+ 1)) = ∃x,∼ P (x)∨ ∼ P (x+ 1)

(b) ∼ (∃x,Q(x) → Q(x+ 1))
Solution: ∼ (∃x,Q(x) → Q(x+ 1)) = ∀x,Q(x)∧ ∼ Q(x+ 1)

(c) ∼ (∃x, ∀yP (x, y) ∨Q(x, y))
Solution: ∼ (∃x, ∀yP (x, y) ∨Q(x, y)) = ∀x, ∃y,∼ P (x, y)∧ ∼ Q(x, y)

(d) ∼ (∀x, ∃yP (x, y) ∧Q(x, y))
Solution: ∼ (∀x, ∃yP (x, y) ∧Q(x, y)) = ∃x, ∀y,∼ P (x, y)∨ ∼ Q(x, y)

(e) ∼ (∀x, ∃yP (x, y) ↔ Q(x, y))
Solution: ∼ (∀x, ∃yP (x, y) ↔ Q(x, y)) = ∃x, ∀y, (P (x, y)∧ ∼ Q(x, y)) ∨ (∼ P (x, y) ∧
Q(x, y))

6. Assume an is a sequence of real numbers. The formal definition that an converges to a0 ∈ R

as n → ∞ is:
∀ǫ > 0, ∃N ∈ N, (n ≥ N → |an − a0| < ǫ)

Negate this statement.
Solution: ∼ [∀ǫ > 0, ∃N ∈ N, (n ≥ N → |an − a0| < ǫ)] = ∃ǫ > 0, ∀N ∈ N, (n ≥ N ∧ |an − a0| ≥ ǫ)

7. Negate the following, writing your results in english:

(a) There was once a year in which every day was rainy or snowy.
Solution: Every year has one day which is neither rainy nor snowy.

(b) For every week there is at least one day where if it’s cloudy then it snows.
Solution: There was once a week in which all days were cloudy and did not snow.



8. Provide proofs with justification of each of the following. Some statistics to help:

• One is trivially true.

• One is vacuously true.

• Two should have direct proofs.

• Two should have proofs of the contrapositive.

• One requires an intermediate step by the contrapositive with a link to a direct proof.

• One requires cases.

(a) If n,m ∈ Z are both odd then 3n−m+ 1 is odd.
Proof: Suppose both are odd, then n = 2k + 1 and m = 2l + 1 with k, l ∈ Z. Then
3n − m + 1 = 3(2k + 1) − (2l + 1) + 1 = 6k − 2l + 1 = 2(3k − l) + 1 = 2b + 1 with
b = 3k − l ∈ Z so 3n−m+ 1 is odd. ⌣̈

(b) If n ∈ Z and 3n− 7 is odd then n

2
+ 1 ∈ Z.

Lemma: If 3n− 7 is odd then n is even.
Proof of Lemma: Done in class.
Proof of Problem: If 3n − 7 is odd then by the lemma n is even and so n = 2b for
b ∈ Z. Then n

2
+ 1 = b+ 1 ∈ Z as desired. ⌣̈

(c) If x ∈ R and x2 + 2x ≤ 3 then −3 ≤ x ≤ 1.
Proof: Suppose x2 + 2x ≤ 3. Then (x + 3)(x − 1) ≤ 0 so either we have x + 3 ≥ 0 and
x − 1 ≤ 0 or we have x + 3 ≤ 0 and x − 1 ≥ 0. In the former case x ≥ −3 and x ≤ 1
yielding −3 ≤ x ≤ 1. In the latter case x ≤ −3 and x ≥ 1 which is impossible. Thus
together we have −3 ≤ x ≤ 1. ⌣̈

(d) If x ∈ R and |x+ 1|+ 1 = 0 then x2 = 4.
Proof: Vacuously true since |x+ 1|+ 1 = 0 is never true. ⌣̈

(e) If n ∈ Z and 3n+ 1 is odd then n is even.
Proof: We prove the contrapositive, that if n is odd then 3n + 1 is even. If n is odd
then n = 2k + 1 for k ∈ Z. Then 3n + 1 = 3(2k + 1) + 1 = 6k + 4 = 2(3k + 2) = 2b for
b = 3k + 2 ∈ Z and so 3n+ 1 is even. ⌣̈

(f) If n ∈ Z and n2 + n < 0 then |n+ 1|+ 1 > 0.
Proof: Trivially true since |n+ 1|+ 1 > 0 for all n ∈ Z. ⌣̈

(g) If n ∈ Z then n2 + n+ 1 is odd.
Proof: We examine the cases where n is even and odd.
Case 1: If n is even then n = 2k for k ∈ Z so then n2+n+1 = (2k)2+2k+1 = 2(2k2+k)+1
so n2 + n+ 1 is odd.
Case 2: If n is odd then n = 2k+1 for k ∈ Z so then n2+n+1 = (2k+1)2+2k+1+1 =
2(2k2 + 3k + 1) + 1 so n2 + n+ 1 is odd. ⌣̈

(h) If f(x) is a function and f ′(x)− 2f(x) = 0 then f(x) 6= sin(2x).
Proof: We prove the contrapositive, tht if f(x) = sin(2x) then f ′(x) − 2f(x) 6= 0. If
f(x) = sin(2x) then f ′(x) − 2f(x) = 2 cos(2x) − sin(2x) and this does not equal 0, for
example, when x = 0. ⌣̈



9. Explain why the following proofs fail. Explanations should be in full sentences with minimal
notation.

(a) Claim: If x2 − 4 = 0 then x = 2.
”Proof”: Suppose x = 2. Then x2 = 4 and so x2 − 4 = 0.
Problem: The “proof” is actually of the converse.

(b) Claim: 3 = −3.

”Proof”: Let x = 3. Then x2 = (−x)2 so
√
x2 =

√

(−x)2 and so canceling the square
root and the square yields x = −x and so 3 = −3.
Problem: The equation

√
x2 = x is only valid for positive x and so

√

(−3)2 6= −3.

(c) Claim: 1 = −1.
”Proof”: 1 =

√
1 =

√

(−1)(−1) =
√
−1

√
−1 = i · i = −1.

Problem: The equation
√
xy =

√
x
√
y is only valid for positive x, y and so

√

(−1)(−1) 6=√
−1

√
−1.


