ت

1. Let $a, b \in \mathbb{Z}$. Prove that if a|b and b|a then $a = \pm b$.

Proof: First we prove \rightarrow and then \leftarrow .

Part 1: If a|b and b|a then $a = \pm b$: Since a|b and b|a we know a = bm and b = an for $m, n \in \mathbb{Z}$. Then a = bm = anm and so nm = 1 and either n = m = 1 or n = m = -1. In the former case a = b and in the latter case a = -b.

Part 2: If $a = \pm b$ then a|b and b|a: If $a = \pm b$ then $a = \pm 1 \cdot b$ and $b = \pm 1 \cdot a$ so a|b and b|a.

2. Let $x, y \in \mathbb{Z}$. Prove that if $3 \nmid x$ and $3 \nmid y$ then $3|(x^2 - y^2)$.

Proof: There are four cases to deal with because we could have x = 3k + 1 or x = 3k + 2 for $k \in \mathbb{Z}$ and we could have y = 3n + 1 or y = 3n + 2 for $n \in \mathbb{Z}$.

Case 1: If x = 3k + 1 and y = 3n + 1 then $x^2 - y^2 = (3k + 1)^2 - (3n + 1)^2 = 9kn + 6k - 6n = 3(3kn + 2k - 2n)$ and so $3|(x^2 - y^2)$.

Case 2: If x = 3k+1 and y = 3n+2 then $x^2 - y^2 = (3k+1)^2 - (3n+2)^2 = 9kn + 6k - 12n - 3 = 3(3kn + 2k - 4n - 1)$ and so $3|(x^2 - y^2)$.

Case 3: If x = 3k+2 and y = 3n+1 then $x^2 - y^2 = (3k+2)^2 - (3n+1)^2 = 9kn+12k-6n+3 = 3(3kn+4k-2n+1)$ and so $3|(x^2 - y^2)$.

Case 4: If x = 3k + 2 and y = 3n + 2 then $x^2 - y^2 = (3k + 2)^2 - (3n + 2)^2 = 9kn + 12k - 12n = 3(3kn + 4k - 4n)$ and so $3|(x^2 - y^2)$.

3. Show that if a is an odd integer then $a^2 \equiv 1 \pmod{8}$.

Pre-Proof Note: If a = 2k+1 for $k \in \mathbb{Z}$ then $a^2-1 = 4k^2+4k$ which gives us $a^2 \equiv 1 \pmod{4}$, not good enough. Instead we could divide a by 8 instead of 2 but it suffices to divide by 4. **Proof:** Since a is odd we know either a = 4k + 1 or a = 4k + 3 with $k \in \mathbb{Z}$.

Case 1: If
$$a = 4k + 1$$
 then $a^2 - 1 = 16k^2 + 8k = 8(2k^2 + 1)$ so $8|(a^2 - 1)$ and $a^2 \equiv 1 \pmod{8}$.
Case 1: If $a = 4k + 3$ then $a^2 - 1 = 16k^2 + 24k = 8(2k^2 + 3)$ so $8|(a^2 - 1)$ and $a^2 \equiv 1 \pmod{8}$.

4. Let $m, n \in \mathbb{Z}$. Prove that if $n \equiv 1 \pmod{2}$ and $m \equiv 3 \pmod{4}$ then $n^2 + m \equiv 0 \pmod{4}$. **Proof:** Since $n \equiv 1 \pmod{2}$ we know 2|(n-1) so n = 2k + 1 for $k \in \mathbb{Z}$. Likewise since $m \equiv 3 \pmod{4}$ then 4|(m-3) so m = 4n+3 for $n \in \mathbb{Z}$. Then $n^2 + m = 4k^2 + 4k + 1 + 4n + 3 = 4(k^2 + k + n + 1)$ and so $n^2 + m \equiv 0 \pmod{4}$. 5. Let $x, y \in \mathbb{R}$. Prove thave if $x^2 - 4x = y^2 - 4y$ and $x \neq y$ then x + y = 4.

Proof: Given that $x^2 - 4x = y^2 - 4y$ we add 4 to both sides and factor, yielding $(x - 2)^2 = (y-2)^2$. From here we know either x - 2 = +(y - 2) or x - 2 = -(y - 2). The former case gives us x = y which we know is not true so we have the latter case which gives us x - 2 = 2 - y so x + y = 4.

6. Let A and B be sets. Prove that $A \cap B = A$ iff $A \subseteq B$.

Proof: First we show that $A \cap B = A \rightarrow A \subseteq B$ and then we show the reverse.

Part 1: $A \cap B = A \rightarrow A \subseteq B$: Let $x \in A$. Since $a = A \cap B$ we then have $x \in A \cap B$ so $x \in B$ as desired.

Part 2:

 $A \subseteq B \rightarrow A \cap B = A$: We need to show $A \cap B \subseteq A$ and $A \subseteq A \cap B$. First let $x \in A \cap B$. Since $A \cap B \subseteq A$ we have $x \in A$ as desired. Second let $x \in A$. Since $A \subseteq B$ we know $x \in B$ and so $x \in A \cap B$ as desired. \Box

7. Let A and B be sets. Prove that $A \cup B = A \cap B$ iff A = B.

Proof: First we prove that $A \cup B = A \cap B \rightarrow A = B$ and then we show the reverse.

Part 1: $A \cup B = A \cap B \rightarrow A = B$: Assume $A \cup B = A \cap B$. Let $x \in A$ then $x \in A \cup B$ and so $x \in A \cap B$ and so $x \in B$. Simililarly let $x \in B$ then $x \in A \cup B$ and so $x \in A \cap B$ and so $x \in A$. Thus A = B.

Part 2: $A = B \rightarrow A \cup B = A \cap B$: If A = B then of course $A \cup B = A \cup A = A = A \cap A = A \cap B$. \vdots