- 1. For each of the following indicate symoblically what you would assume for each proof method: Direct, by contrapositive and by contradiction.
 - (a) $\forall x, P(x) \to Q(x)$

Solution: Direct: P(x)Contrapositive: $\sim Q(x)$ Contradiction: $\exists x, P(x) \land (\sim Q(x))$

(b) $P \to (Q \lor R)$

Solution: Direct: PContrapositive: $(\sim Q) \land (\sim R)$. Contradiction: $P \land ((\sim Q) \land (\sim R))$

(c) $\forall x, \exists y, P(x, y) \rightarrow (Q(x, y) \land R(x, y))$

 $\begin{array}{l} \text{Solution:} \\ \text{Direct: } P(x,y) \\ \text{Contrapositive: } (\sim Q(x,y)) \lor (\sim R(x,y)) \\ \text{Contradiction: } \exists x, \forall y, P(x,y) \land ((\sim Q(x,y)) \lor (\sim R(x,y))) \\ \end{array}$

(d) $\forall x, (P(x) \lor Q(x)) \to R(x)$

Solution: Direct: $P(x) \lor Q(x)$ Contrapositive: $\sim R(x)$ Contradiction: $\exists x, (P(x) \lor Q(x)) \land (\sim R(x))$

(e) $\forall x, P(x) \lor (Q(x) \to R(x))$

Solution: Note this was trickier than intended since it's not an implication as written and we need to rewrite it. Without the x for clarity:

$$P \lor (Q \to R) = P \lor ((\sim Q) \lor R) = (P \lor (\sim Q)) \lor R = \sim (P \lor (\sim Q)) \to R$$

 $\begin{array}{l} \text{Direct:} & \sim (P(x) \lor (\sim Q(x))) \\ \text{Contrapositive:} & \sim R(x) \\ \text{Contradiction:} & \exists x, (\sim (P(x) \lor (\sim Q(x)))) \land (\sim R(x)) \end{array}$

2. Prove that for $a, b, c \in \mathbb{Z}$ that if a | (b + c) and $a \nmid b$ then $a \nmid c$.

Proof: We proceed by contradiction assuming that there are $a, b, c \in \mathbb{Z}$ with $a|(b+c), a \nmid b$ and a|c. Then ak = b + c for $k \in \mathbb{Z}$ and aj = c for $j \in \mathbb{Z}$. Then ak = b + c = b + aj so ak - aj = b so a(k-j) = b and so a|b, a contradiction. \mathcal{QED}

3. Prove that if a and b are odd integers then $4 \nmid (a^2 + b^2)$.

Proof: We proceed by contradiction assuming that a and b are odd and $4 \mid (a^2 + b^2)$. We have a = 2k + 1 and b = 2j + 1 for $j, k \in \mathbb{Z}$. Then

$$a^{2} + b^{2} = 4k^{2} + 4k + 1 + 4j^{2} + 4j + 1 = 4(k^{2} + k + j^{2} + j) + 2$$

so $4 \nmid (a^2 + b^2)$, a contradiction.

Note: This could be done directly and would be essentially the same.

4. Prove that the sum of the two legs of a right triangle must be greater than the hypotenuse.

Proof: We proceed by contradiction assuming we have a right triangle with legs a and b and hypotenuse c such that $c \ge a + b$. Squaring both sides and applying the Pythagorean Theorem yields

$$c^{2} \ge (a+b)^{2} = a^{2} + 2ab + b^{2} = c^{2} + 2ab$$

from whence it follows that $2ab \leq 0$ which is impossible since a, b > 0. QED

5. Prove that $\sqrt{3}$ is irrational. Just as with our proof with $\sqrt{2}$ you will need a lemma. State and prove this lemma as part of your solution.

Lemma: For $a \in \mathbb{Z}$ we have $3|a^2$ iff 3|a.

Proof: First we prove if 3|a then $3|a^2$: If 3|a then a = 3k for $k \in \mathbb{Z}$ so then $a^2 = 9k^2 = 3(3k^2)$ so $3|a^2$.

Next we prove if $3|a^2$ then 3|a by proving the contrapositive, if $3 \nmid a$ then $3 \nmid a^2$. There are two cases if $3 \nmid a$. First, if a = 3k + 1 for $k \in \mathbb{Z}$ then $a^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$ so $3 \nmid a^2$. Second, if a = 3k + 2 for $k \in \mathbb{Z}$ then $a^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$ so $3 \nmid a^2$.

Proof of Problem: We proceed by contradiction, assuming that $\sqrt{3}$ is rational. If so, then $\sqrt{3} = \frac{a}{b}$ with $a, b \in \mathbb{Z}$ in lowest terms. Then we have $3 = \frac{a^2}{b^2}$ and so $3b^2 = a^2$ which tells us $3|a^2$ so 3|a by the lemma. This then gives us a = 3k for $k \in \mathbb{Z}$ and so $3b^2 = (3k)^2 = 9k^2$ so $b^2 = 3k^2$ so $3|b^2$ and so 3|b. But we cannot have 3|a and 3|b since $\frac{a}{b}$ is in lowest terms. \mathcal{QED}

6. Prove there does not exist a real number x such that $x^6 + x^4 + 1 = 2x^2$.

Proof: Assume by way of contradiction that we do. Then

$$x^{6} + x^{4} + 1 = 2x^{2}$$
$$x^{6} + x^{4} - 2x^{2} + 1 = 0$$
$$x^{6} + (x^{2} - 1)^{2} = 0$$

Since both summands have even powers both are nonnegative. But since the sum is zero they both must equal zero. The first tells us x = 0 while the second tells us $x = \pm 1$. This is a contradiction. QED

QED

7. Prove that the equation $x^3 + x + 1 = 0$ has a real solution but no rational solution. Hint: For the second part, if $\frac{p}{q}$ is such a root in lowest terms examine the parities of p and q.

Proof: First observe that when x = 0 we have $x^3 + x + 1 = 1 > 0$ and when x = -1 we have $x^3 + x + 1 = -1$ so, since $x^3 + x + 1$ is continuous, by the Intermediate Value Theorem we know there is an $x \in (-1, 0)$ with $x^3 + x + 1 = 0$.

For the second part we proceed by contradiction. Assume that $x = \frac{a}{b}$ is a rational solution with $a, b \in \mathbb{Z}$ in lowest terms. So then we have

$$x^{3} + x + 1 = 0$$
$$\left(\frac{a}{b}\right)^{3} + \left(\frac{a}{b}\right) + 1 = 0$$
$$a^{3} + ab^{2} + b^{3} = 0$$

Now consider the parities of a and b. Since $\frac{a}{b}$ is in lowest terms they're not both even and so we have three cases with $j, k \in \mathbb{Z}$:

Case 1: a = 2j + 1 and b = 2j + 1: Then $a^3 + ab^2 + b^3 = 2(4j^3 + 6j^2 + 4j + 4jk^2 + 4jk + 8k^2 + 5k + 4k^3 + 1) + 1$ which is odd and hence not zero.

Case 2: a = 2j + 1 and b = 2j: Then $a^3 + ab^2 + b^3 = 2(4j^3 + 6j^2 + 3j + 4jk^2 + 2k^2 + 4k^3) + 1$ which is odd and hence not zero.

Case 3: a = 2j and b = 2j + 1: Then $a^3 + ab^2 + b^3 = 2(4j^3 + 4jk^2 + 4jk + j + 4k^3 + 6k^2 + k) + 1$ which is odd and hence not zero. QED

8. Suppose I have a list of real numbers, all between 0 and 1, listed with decimal expansion as follows, with each variable representing a digit:

$$\begin{array}{c} 0.a_{11}a_{12}a_{13}...\\ 0.a_{21}a_{22}a_{23}...\\ 0.a_{31}a_{32}a_{33}...\\ ...\end{array}$$

Prove there exists a real number not in the list.

Proof: Construct a new number $0.a_1a_2...$ as follow: Let a_1 be a digit which is not a_{11} . Let a_2 be a digit which is not a_{22} . Let a_3 be a digit which is not a_{33} . And so on. Then clearly this new number is not in the list since it differs from the n^{th} number at the n^{th} digit. \mathcal{QED}

9. Prove that there are infinitely many $x, y \in \mathbb{Z}$ with 4x - 6y = 14.

Proof: We see a pattern in the solutions: x = 5, y = 1 x = 8, y = 3x = 11, y = 5 And so it looks like x = 5 + 3t, y = 1 + 2t for $t \in \mathbb{Z}$ works. We check:

$$4(5+3t) - 6(1+2t) = 20 + 12t - 6 - 12t = 14$$

and it works.

QED