MATH 310: Homework 6 Solutions Due Monday 7/30/2012

1. Suppose that n is a positive even integer with & odd. Prove that there do not exist positive [10 pts]
integers x and y with 22 — 3% = n.

odd and
=2rxr+1

Proof: Assume by way of contradiction that n is a positive even integer with
that = and y are positive integer solutions to 22 — y2 = n. Since 5 is odd we have
for x € Z and so n = 4z + 2.

Consider now the parities of x and y:

Case 1: If x = 2j and y = 2k for j, k € Z then 2% — y? = 452 — 4k = 4(j% — k?).
Case 2: If 2 = 2j+1 and y = 2k for j, k € Z then 2% —y? = 452 +4j+1—4k? = 4(j%+j—k?)+1
Case 3: If x = 2j and y = 2k + 1 for j,k € Z then 22 — y? = 452 — 4k%? — 4k — 1 =
42 —k* —k—1) + 3.

Case 4: If v = 25 +1 and y = 2k + 1 for j,k € Z then 22 — y? = 452 + 45 + 4k? + 4k =
4(j% + j + k®> + k) In each case we do not get 4z + 2, a contradiction. QED

|33

2. Let m € Z. Prove that if 31 (m? — 1) then 3|m by contradiction. [10 pts]

Proof: Assume by way of contradiction that 3 { (m? — 1) but 3 f m. Then we have two

cases:
Case 1: If m = 3k + 1 for k € Z then m? — 1 = 9k% + 6k = 3(3k? + 2k), contradicting
31 (m?—1).
Case 2: If m = 3k = 2 for k € Z then m? — 1 = 9k? + 12k + 3 = 3(3k? + 6k + 1), contradicting
31 (m? —1). QED
3. Let x be a positive real number. Prove that if 2 — % > 1 then z > 2: [30 pts]

(a) By a direct proof.
Proof: Assume x — % > 1 then 22 —2 > z and so =
give (z — 2)(x + 1) > 0. We then have two cases:
Case 1: £ —2 >0 and x + 1 > 0: These combine to yield x > 2.
Case 2: x —2 < 0 and z + 1 < 0: These combine to yield x < —1 which is impossible
since x is a positive real number. QED

2 _ 2 —2 > 0 which factors to

(b) By proving the contrapositive.

Proof: Assume z < 2 and then observe that % >1 and so z — % <2-1=1. QED

(¢) By contradiction.

Proof: Assume:v—%>1and:v§2. Thenm—%§2—1:1and8012x—%>1,a
contradiction. QED



4. Prove that for all n € N that 3|(n3 — n): [20 pts]

(a) Directly with cases.

Proof: There are three cases we must examine:

Case 1: If n = 3k for k € Z then n® —n = 27k — 3k = 3(9k® — k).

Case 2: If n =3k + 1 for k € Z then n3 — n = 27k% + 27k + 6k = 3(9k> + 9k? + 2k)
Case 3: If n = 3k+2 for k € Z then n®—n = 27k3+54k>+33k+6 = 3(9k>+18k%+11k+2)
In all three cases we see that 3|(n® — n). QED

(b) Using induction.
Proof: We have:
Base Case: If n =1 then n® —n =12 — 1 =0 and 3|0.

Inductive Step: We assume 3|(n® —n) and prove 3|((n + 1) — (n + 1)). The assumption
may be rewritten as n® — n = 3k for k € Z and then observe that

(n4+1)2=(n+1)=n>+3n*>+2n =3k +n+3n? +2n = 3(k +n? +n)
and we have our conclusion. QED

5. Show that Iz € R, 2° +22% + 2 —5=0. [10 pts]

Proof: First observe that when z = 0 the expression yields 0° + 2(0)> + 0 — 5 = —5 and
when z = 2 the expression yields 2° +2(5)3 42 —5 > 0 so by the Intermediate Value Theorem
we are guaranteed an x € (0,2) with 2° + 223 + 2 — 5 = 0.

Next we must prove uniqueness. Assume by way of contradiction that there are more than
one such z. Call two of them z; and zo. Assume without loss of generality that z; < zs. By
the Mean Value Theorem there exists some x € (x1,z2) with % (x5 +223 + 7 — 5) = 0. But
this derivative is 52* + 622 4 1 which is always positive, a contradiction. QED

6. Prove by induction that n® < 3" for n > 4. [10 pts]

Proof: We have

Base Case: When n = 4 we check if 43 < 3% which is true.

Inductive Step: We assume that n® < 3™ and we wish to prove (n+ 1)3 < 37+t We'll show
instead that 3" — (n + 1) > 0. To see this observe:

3" (n4+1)3=3-3"-(n+12 >3- (n+1)® =2n% - 3n? = 3n — 1 = n(n(2n — 3) — 3)

Now then since n > 4 we have 2n — 3 > 5 and so n(n(2n — 3) — 3) > 4(4(5) —3) = 68 > 0 and
so we have our claim. QED

7. Prove by induction that 7|(3%" — 2") for every nonnegative integer n. [10 pts]

Proof: We have

Base Case: When n = 0 we check if 7|(3%(?) — 2°) which is true.

Inductive Step: We assume 7|(3%" — 2") and we prove 7|(32("+1) — 27+1) To see this first
rewrite the assumption as 32" — 2" = 7k for some k € Z and then observe that

FAHD-2"T g g2 9. 9n
=7"+2.3" —2.2"
= 7" 4+ 2(7k) By the IH
=7[6*""" +2k]

as desired. QED



8. Define a; =1, as = 4 and a, = 2a,_1 — an_o for n > 3. Show that a,, = 3n — 2 for all n € N
by strong induction.

Proof: We have:

Base Cases: We check if a3 =1 = 3(1) — 2 which is true and if ay = 4 = 3(2) — 2 which is true.
Inductive Step: We assume that a; = 31 — 2 for 1 < i < n and we prove a,4+1 = 3(n+1) — 2.
To do this observe that

pt1 = 20p —ap—1=2B3n—2)—3(n—-1)—2)=3(n+1) -2

as desired. QED

9. Prove or disprove each of the following:

(a)

There exists a real number z with 22 < z < 2.

Proof: Assume by way of contradiction that there is such an z. The inequality then
splits to give us 22 < z and z < 3. These factor to give:

z(z—1)<0and z(1 —2)(1+z) <0

Now then there are several cases:

Case 1: If > 1 then x — 1 > 0 and so (z — 1) > 0 which contradicts the first.

Case 2: If x < —1 then z — 1 < —2 and so z(x — 1) > 2 > 0 which contradicts the first.
Case 3: f 0 <z < 1then1—2 >0and 14+ 2 > 0 and so z(1 —z)(1 + =) > 0 which
contradicts the second.

Case 4: If -1 <2 <O0then1l—2>0and 1+ 2 >0 and so (1 — z)(1 4+ ) > 0 which
contradicts the second.

Either way we have a contradiction and the result is proved. QED
If A, B,C are sets and AN B =ANC then B=C.

False, for example if A = {1}, B = {1,2}, C = {1, 3}.

Every nonzero rational number is the product of two irrational numbers.

Lemma 1: If @ € Z then av/2 is irrational: Proof: Assume to the contrary that a2 = %
with ¢, d € Z then V2 = 7 which contradicts V2 being irrational. QED
Lemma 2: If b € Z then ﬁ is irrational. Proof: Assume to the contrary that ﬁ =9

with ¢, d € Z then V2 = b% which contradicts v/2 being irrational. QED

Proof of Problem: Let ¢ € Q so ¢ = § with a,b € Z. Observe that (a\@) (ﬁ) =q and
by our lemmas these are both irrational. QED

Every odd integer is the sum of three odd integers.

Proof: Observe that if n is odd then n = n + 1 — 1, all of which are odd. QED

(20 pts]



