1. Suppose that n is a positive even integer with $\frac{n}{2}$ odd. Prove that there do not exist positive [10 pts] integers x and y with $x^2 - y^2 = n$.

Proof: Assume by way of contradiction that n is a positive even integer with $\frac{n}{2}$ odd and that x and y are positive integer solutions to $x^2 - y^2 = n$. Since $\frac{n}{2}$ is odd we have $\frac{n}{2} = 2x + 1$ for $x \in \mathbb{Z}$ and so n = 4x + 2. Consider now the parities of x and y:

Case 1: If x = 2j and y = 2k for $j, k \in \mathbb{Z}$ then $x^2 - y^2 = 4j^2 - 4k^2 = 4(j^2 - k^2)$. Case 2: If x = 2j + 1 and y = 2k for $j, k \in \mathbb{Z}$ then $x^2 - y^2 = 4j^2 + 4j + 1 - 4k^2 = 4(j^2 + j - k^2) + 1$ Case 3: If x = 2j and y = 2k + 1 for $j, k \in \mathbb{Z}$ then $x^2 - y^2 = 4j^2 - 4k^2 - 4k - 1 = 4(j^2 - k^2 - k - 1) + 3$. Case 4: If x = 2j + 1 and y = 2k + 1 for $j, k \in \mathbb{Z}$ then $x^2 - y^2 = 4j^2 + 4j + 4k^2 + 4k = 4k^2 + 4k^2 + 4k^2 + 4k = 4k^2 + 4k^2 + 4k^2 + 4k^2 + 4k = 4k^2 + 4k^2 + 4k^2 + 4k^2 + 4k = 4k^2 + 4k^$

 $4(j^2 + j + k^2 + k)$ In each case we do not get 4x + 2, a contradiction. QED

2. Let $m \in \mathbb{Z}$. Prove that if $3 \nmid (m^2 - 1)$ then $3 \mid m$ by contradiction.

Proof: Assume by way of contradiction that $3 \nmid (m^2 - 1)$ but $3 \nmid m$. Then we have two cases: Case 1: If m = 3k + 1 for $k \in \mathbb{Z}$ then $m^2 - 1 = 9k^2 + 6k = 3(3k^2 + 2k)$, contradicting $3 \nmid (m^2 - 1)$. Case 2: If m = 3k = 2 for $k \in \mathbb{Z}$ then $m^2 - 1 = 9k^2 + 12k + 3 = 3(3k^2 + 6k + 1)$, contradicting $3 \nmid (m^2 - 1)$. \mathcal{QED}

3. Let x be a positive real number. Prove that if $x - \frac{2}{x} > 1$ then x > 2:

(a) By a direct proof.

Proof: Assume $x - \frac{2}{x} > 1$ then $x^2 - 2 > x$ and so $x^2 - x - 2 > 0$ which factors to give (x - 2)(x + 1) > 0. We then have two cases: Case 1: x - 2 > 0 and x + 1 > 0: These combine to yield x > 2. Case 2: x - 2 < 0 and x + 1 < 0: These combine to yield x < -1 which is impossible since x is a positive real number. \mathcal{QED}

(b) By proving the contrapositive.

Proof: Assume $x \le 2$ and then observe that $\frac{2}{x} \ge 1$ and so $x - \frac{2}{x} \le 2 - 1 = 1$. QED (c) By contradiction.

Proof: Assume $x - \frac{2}{x} > 1$ and $x \le 2$. Then $x - \frac{2}{x} \le 2 - 1 = 1$ and so $1 \ge x - \frac{2}{x} > 1$, a contradiction. \mathcal{QED}

[10 pts]

[30 pts]

- 4. Prove that for all $n \in \mathbb{N}$ that $3|(n^3 n)$:
 - (a) Directly with cases.

Proof: There are three cases we must examine: Case 1: If n = 3k for $k \in \mathbb{Z}$ then $n^3 - n = 27k^3 - 3k = 3(9k^3 - k)$. Case 2: If n = 3k + 1 for $k \in \mathbb{Z}$ then $n^3 - n = 27k^3 + 27k^2 + 6k = 3(9k^3 + 9k^2 + 2k)$ Case 3: If n = 3k + 2 for $k \in \mathbb{Z}$ then $n^3 - n = 27k^3 + 54k^2 + 33k + 6 = 3(9k^3 + 18k^2 + 11k + 2)$ In all three cases we see that $3|(n^3 - n)$. \mathcal{QED}

(b) Using induction.

Proof: We have: Base Case: If n = 1 then $n^3 - n = 1^3 - 1 = 0$ and 3|0. Inductive Step: We assume $3|(n^3 - n)$ and prove $3|((n + 1)^3 - (n + 1))$. The assumption may be rewritten as $n^3 - n = 3k$ for $k \in \mathbb{Z}$ and then observe that

$$((n+1)^3 - (n+1) = n^3 + 3n^2 + 2n = 3k + n + 3n^2 + 2n = 3(k+n^2 + n)$$

and we have our conclusion.

5. Show that $\exists ! x \in \mathbb{R}, \ x^5 + 2x^3 + x - 5 = 0.$

Proof: First observe that when x = 0 the expression yields $0^5 + 2(0)^3 + 0 - 5 = -5$ and when x = 2 the expression yields $2^5 + 2(5)^3 + 2 - 5 > 0$ so by the Intermediate Value Theorem we are guaranteed an $x \in (0, 2)$ with $x^5 + 2x^3 + x - 5 = 0$.

Next we must prove uniqueness. Assume by way of contradiction that there are more than one such x. Call two of them x_1 and x_2 . Assume without loss of generality that $x_1 < x_2$. By the Mean Value Theorem there exists some $x \in (x_1, x_2)$ with $\frac{d}{dx}(x^5 + 2x^3 + x - 5) = 0$. But this derivative is $5x^4 + 6x^2 + 1$ which is always positive, a contradiction. QED

6. Prove by induction that $n^3 \leq 3^n$ for $n \geq 4$.

Proof: We have

Base Case: When n = 4 we check if $4^3 \le 3^4$ which is true. Inductive Step: We assume that $n^3 \le 3^n$ and we wish to prove $(n+1)^3 \le 3^{n+1}$. We'll show instead that $3^{n+1} - (n+1)^3 \ge 0$. To see this observe:

$$3^{n+1} - (n+1)^3 = 3 \cdot 3^n - (n+1)^3 \ge 3n^3 - (n+1)^3 = 2n^3 - 3n^2 - 3n - 1 = n(n(2n-3) - 3)$$

Now then since $n \ge 4$ we have $2n-3 \ge 5$ and so $n(n(2n-3)-3) \ge 4(4(5)-3) = 68 > 0$ and so we have our claim. \mathcal{QED}

7. Prove by induction that $7|(3^{2n}-2^n)$ for every nonnegative integer n.

Proof: We have

Base Case: When n = 0 we check if $7|(3^{2(0)} - 2^0)$ which is true. Inductive Step: We assume $7|(3^{2n} - 2^n)$ and we prove $7|(3^{2(n+1)} - 2^{n+1})$. To see this first rewrite the assumption as $3^{2n} - 2^n = 7k$ for some $k \in \mathbb{Z}$ and then observe that

$$3^{2(n+1)-2^{n+1}} = 9 \cdot 3^{2n} - 2 \cdot 2^{n}$$

= $7^{2n} + 2 \cdot 3^{2n} - 2 \cdot 2^{n}$
= $7^{2n} + 2(7k)$ By the IH
= $7 [6^{2n-1} + 2k]$

[20 pts]

[10 pts]

QED

8. Define $a_1 = 1$, $a_2 = 4$ and $a_n = 2a_{n-1} - a_{n-2}$ for $n \ge 3$. Show that $a_n = 3n - 2$ for all $n \in \mathbb{N}$ by strong induction.

Proof: We have:

Base Cases: We check if $a_1 = 1 = 3(1) - 2$ which is true and if $a_2 = 4 = 3(2) - 2$ which is true. Inductive Step: We assume that $a_i = 3i - 2$ for $1 \le i \le n$ and we prove $a_{n+1} = 3(n+1) - 2$. To do this observe that

$$a_{n+1} = 2a_n - a_{n-1} = 2(3n-2) - (3(n-1)-2) = 3(n+1) - 2$$

as desired.

- 9. Prove or disprove each of the following:
 - (a) There exists a real number x with $x^2 < x < x^3$.

Proof: Assume by way of contradiction that there is such an x. The inequality then splits to give us $x^2 < x$ and $x < x^3$. These factor to give:

$$x(x-1) < 0$$
 and $x(1-x)(1+x) < 0$

Now then there are several cases:

Case 1: If $x \ge 1$ then $x - 1 \ge 0$ and so $x(x - 1) \ge 0$ which contradicts the first. Case 2: If $x \le -1$ then $x - 1 \le -2$ and so $x(x - 1) \ge 2 > 0$ which contradicts the first. Case 3: If 0 < x < 1 then 1 - x > 0 and 1 + x > 0 and so x(1 - x)(1 + x) > 0 which contradicts the second. Case 4: If -1 < x < 0 then 1 - x > 0 and 1 + x > 0 and so x(1 - x)(1 + x) > 0 which contradicts the second. Either way we have a contradiction and the result is proved.

(b) If A, B, C are sets and $A \cap B = A \cap C$ then B = C.

False, for example if $A = \{1\}, B = \{1, 2\}, C = \{1, 3\}.$

(c) Every nonzero rational number is the product of two irrational numbers.

Lemma 1: If $a \in \mathbb{Z}$ then $a\sqrt{2}$ is irrational: Proof: Assume to the contrary that $a\sqrt{2} = \frac{c}{d}$ with $c, d \in \mathbb{Z}$ then $\sqrt{2} = \frac{c}{da}$ which contradicts $\sqrt{2}$ being irrational. \mathcal{QED}

Lemma 2: If $b \in \mathbb{Z}$ then $\frac{1}{b\sqrt{2}}$ is irrational. Proof: Assume to the contrary that $\frac{1}{b\sqrt{2}} = \frac{c}{d}$ with $c, d \in \mathbb{Z}$ then $\sqrt{2} = \frac{d}{bc}$ which contradicts $\sqrt{2}$ being irrational. \mathcal{QED}

Proof of Problem: Let $q \in \mathbb{Q}$ so $q = \frac{a}{b}$ with $a, b \in \mathbb{Z}$. Observe that $\left(a\sqrt{2}\right)\left(\frac{1}{b\sqrt{2}}\right) = q$ and by our lemmas these are both irrational. \mathcal{QED}

(d) Every odd integer is the sum of three odd integers.

Proof: Observe that if n is odd then n = n + 1 - 1, all of which are odd. QED

[20 pts]

QED