1. Define $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$ and define the relation R from A to B by

$$R = \{(a, x), (a, z), (b, y), (b, z), (c, y)\}\$$

- (a) List the elements in $\{\alpha \in A \mid \alpha Ry\}$.
- (b) Find $|\{(\alpha, \beta) \mid (\alpha = a) \lor (\beta = z)\}|$.
- 2. Define a relation R on \mathbb{Z} by $R = \{(a, b) \mid a \leq b + 2\}.$ [15 pts]
 - (a) Prove or disprove: R is reflexive.
 - (b) Prove or disprove: R is symmetric.
 - (c) Prove or disprove: R is transitive.
- 3. Suppose A is the set of all students in this class and we define a relation R on A by sRt if [10 pts] student s has a birthday before or the same day as t. Let x be you. Find the set $\{y \in A \mid xRy\}$. List by first names only.
- 4. Define a relation R on \mathbb{Z} by $R = \{(a,b) \mid 4 \mid (3a+b)\}.$ [20 pts]
 - (a) Prove that R is an equivalence relation.
 - (b) List the distict equivalence classes for R.
- 5. Define a relation R on \mathbb{Z} by $R = \{(a, b) \mid a^2 + b^2 \text{ is even}\}.$ [20 pts]
 - (a) Prove that R is an equivalence relation.
 - (b) List the distict equivalence classes for R.
- 6. Let $A = \{1, 2, 3, 4, 5, 6\}$. Suppose the distict equivalence classes for some relation R are [5 pts] $\{1, 4, 5\}, \{2, 6\}$ and $\{3\}$. What is R?
- 7. A relation R on a nonempty set A is defined to be *circular* if for all $x, y, z \in A$ we have $(xRy \land yRz) \rightarrow zRx$. Prove that R is an equivalence relation iff R is circular and reflexive.