[5 pts]

[20 pts]

1. Find counterexamples to the following false claims:

(a) In \mathbb{Z}_{10} we have $[2][x] = [6] \rightarrow [x] = [3]$.	[5 pts]
(b) Delete.	[5 pts]

- (c) In \mathbb{Z}_{15} we have $[x][y] = [0] \rightarrow ([x] = [0] \lor [y] = [0]).$
- 2. Write down a multiplication table for the equivalence classes of the integers modulo 5. [10 pts]
- 3. By passing to equivalence classes modulo a judicious choice of n solve the following problems:
 - (a) Show that there are no integer solutions to $21x^3 3x^2 + 2x + 8 = 0.$ [15 pts]
 - (b) Show that if $a \in \mathbb{Z}$ then $a^2 \not\equiv 2 \pmod{4}$ and $a^2 \not\equiv 3 \pmod{4}$. [15 pts]
- 4. Consider the equation 6x + 15y = 33.
 - (a) Pass to equivalence classes for some modulus and use this to find a linear expression for x in terms of an unknown integer.
 - (b) Do the same for y using a different modulus.
 - (c) Plug your answers into the original equation to relate your two unknown integers.
 - (d) Give formulas for all solutions to the equation.
- 5. Prove that $f: (\mathbb{R} \{1\}) \to (\mathbb{R} \{3\})$ given by $f(x) = \frac{3x}{x-1}$ is surjective. [10 pts]
- 6. Prove that $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3 6x^2 + 12x 7$ is injective. [10 pts]
- 7. Prove that $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 2x + 4$ is not surjective. [5 pts]
- 8. Prove that $f: (\mathbb{R} \{0, 1\}) \to \mathbb{R}$ given by $f(x) = \frac{1}{x(x-1)}$ is not injective. [5 pts]
- 9. Give two distinct functions $f_1, f_2 : [0, 1] \to [0, 1]$ which are both bijective. Prove bijectivity and [20 pts] distinctness.