[5 pts]

[5 pts]

- 1. Find counterexamples to the following false claims:
 - (a) In \mathbb{Z}_{10} we have $[2][x] = [6] \rightarrow [x] = [3]$. [5 pts]
 - Solution: A counterexample is [x] = [8].
 - (b) Delete.
 - (c) In \mathbb{Z}_{15} we have $[x][y] = [0] \rightarrow ([x] = [0] \lor [y] = [0]).$

Solution: A counterexample is [x] = [3] and [y] = [5].

2. Write down a multiplication table for the equivalence classes of the integers modulo 5. [10 pts]

Solution: We have the following:

•	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	[1]

- 3. By passing to equivalence classes modulo a judicious choice of n solve the following problems:
 - (a) Show that there are no integer solutions to $21x^3 3x^2 + 2x + 8 = 0.$ [15 pts]

Proof: We proceed by contradiction and suppose $x \in \mathbb{Z}$ is a solution. Passing to equivalence classes modulo n = 5 we get:

$$[21][x]^3 + [-3][x]^2 + [2][x] + [8] = 0$$
$$[x]^3 + [2][x]^2 + [2][x] + [3] = 0$$

Since we are in \mathbb{Z}_5 there are only five possible choices for [x] so we test them all:

 $\begin{array}{l} \text{If } [x] = [0] \text{ then } [x]^3 + [2][x]^2 + [2][x] + [3] = [3] \neq [0] \\ \text{If } [x] = [1] \text{ then } [x]^3 + [2][x]^2 + [2][x] + [3] = [3] \neq [0] \\ \text{If } [x] = [2] \text{ then } [x]^3 + [2][x]^2 + [2][x] + [3] = [3] \neq [0] \\ \text{If } [x] = [3] \text{ then } [x]^3 + [2][x]^2 + [2][x] + [3] = [4] \neq [0] \\ \text{If } [x] = [4] \text{ then } [x]^3 + [2][x]^2 + [2][x] + [3] = [3] \neq [0] \\ \end{array}$

It follows that we have a contradiction and no such x exists.

QED

[15 pts]

(b) Show that if $a \in \mathbb{Z}$ then $a^2 \not\equiv 2 \pmod{4}$ and $a^2 \not\equiv 3 \pmod{4}$.

Proof: We proceed by contradiction and assume that there is some $a \in \mathbb{Z}$ with either $a^2 \equiv 2 \pmod{4}$ or $a^2 \equiv 3 \pmod{4}$. Rewriting this with equivalence classes mod 4 we get $[a]^2 = [2]$ or $[a]^2 = [3]$. But if we check the four possibilities we see that $[0]^2 = [0]$, $[1]^2 = [1]$, $[2]^2 = [0]$ and $[3]^2 = [1]$ so no such a exists.

QED

- 4. Consider the equation 6x + 15y = 33.
 - (a) Pass to equivalence classes for some modulus and use this to find a linear expression for x in terms of an unknown integer.

Solution: If we pass to equivalence classes modulo 5 we get [x] = [3] and so x = 5k + 3 for some $k \in \mathbb{Z}$.

(b) Do the same for y using a different modulus.

Solution: If we pass to equivalence classes modulo 2 we get [y] = [1] and so y = 2j + 1 for some $j \in \mathbb{Z}$.

(c) Plug your answers into the original equation to relate your two unknown integers.

Solution: We get

$$6(5k+3) + 15(2j+1) = 33$$

$$30k + 18 + 30j + 15 = 33$$

$$30k + 30j = 0$$

$$k = -j$$

(d) Give formulas for all solutions to the equation.

Solution: So then finally we have x = -5j + 3 and y = 2j + 1 for $j \in \mathbb{Z}$.

5. Prove that $f: (\mathbb{R} - \{1\}) \to (\mathbb{R} - \{3\})$ given by $f(x) = \frac{3x}{x-1}$ is surjective.

Proof: Suppose $y \in \mathbb{R} - \{3\}$. We wish to find an x so that

$$f(x) = y$$

$$\frac{3x}{x-1} = y$$

$$3x = xy - y$$

$$xy - 3x = y$$

$$x(y-3) = y$$

$$x = \frac{y}{y-3}$$

This value exists for any $y \in \mathbb{R} - \{3\}$. We must, however, check that we do not get x = 1 since it's not in the domain. If we did though then we'd have $1 = \frac{y}{y-3}$ or y - 3 = y or -3 = 0, a contradiction.

$$\mathcal{QED}$$

[10 pts]

6. Prove that $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3 - 6x^2 + 12x - 7$ is injective.

Proof: First note that $f(x) = x^3 - 6x^2 + 12x - 7 = (x-2)^3 - 1$. So now assume that $x_1, x_1 \in \mathbb{R} - \{1\}$ with $f(x_1) = f(x_2)$. Then $(x_1 - 2)^3 - 1 = (x_2 - 2)^3 - 1$ which solves easily to get $x_1 = x_2$.

QED

[10 pts]

7. Prove that $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 - 2x + 4$ is not surjective.

Proof: Observe that there is no $x \in \mathbb{R}$ with f(x) = -10 since if we try to solve:

$$x^{2} - 2x + 4 = -10$$

$$x^{2} - 2x + 14 = 0$$

$$x = \frac{2 \pm \sqrt{(-2)^{2} - 4(1)(14)}}{2(1)}$$

which is not in \mathbb{R} .

QED

8. Prove that $f: (\mathbb{R} - \{0, 1\}) \to \mathbb{R}$ given by $f(x) = \frac{1}{x(x-1)}$ is not injective. [5 pts]

Proof: Observe that $3/2 \neq -\frac{1}{2}$ but $f(3/2) = f(-\frac{1}{2}) = \frac{4}{3}$.

QED

9. Give two distinct functions $f_1, f_2 : [0, 1] \to [0, 1]$ which are both bijective. Prove bijectivity and [20 pts] distinctness.

Solution: Let $f_1(x) = x$ and $f_2(x) = x^2$. Clearly these are distinct since for example $f_1(0.5) \neq f_2(0.5)$.

Now then for f_1 we have:

- Surjective: For $y \in [0, 1]$ we want $f_1(x) = y$ or x = y so we just use x = y.
- Injective: If $x_1, x_2 \in [0, 1]$ with $f_1(x_1) = f_1(x_2)$ we have $x_1 = x_2$.

And for f_2 we have:

- Surjective: For $y \in [0, 1]$ we want $f_2(x) = y$ or $x^2 = y$ so we can use $x = \sqrt{y}$.
- Injective: For $x_1, x_2 \in [0, 1]$ with $f_2(x_1) = f_2(x_2)$ we have $x_1^2 = x_2^2$ and so $x_1 = x_2$.

Note: For f_2 it's important to keep in mind that all x-values are in [0, 1] or else some of our calculations would not hold.

[5 pts]