- 1. Consider the function : $(\mathbb{R} \{3\}) \to (\mathbb{R} \{1/2\})$ given by $f(x) = \frac{x}{2x-6}$.
 - (a) Prove that f is injective.

Proof: Suppose $x_1, x_2 \in \mathbb{R} - \{3\}$ with $f(x_1) = f(x_2)$. Then we have

$$\frac{x_1}{2x_1 - 6} = \frac{x_2}{2x_2 - 6}$$

$$x_1(2x_2 - 6) = x_2(2x_1 - 6)$$

$$-6x_1 = -6x_2$$

$$x_1 = x_2$$

 \mathcal{OED}

(b) Prove that f is surjective.

Proof: Let $y \in \mathbb{R} - \{1/2\}$. We desire an $x \in \mathbb{R} - \{3\}$ with f(x) = y. This means we want:

$$\frac{x}{2x-6} = y$$
$$x = y(2x-6)$$
$$x-2yx = -6y$$
$$x(2y-1) = 6y$$
$$x = \frac{6y}{2y-1}$$

Clearly this is defined since $y \neq 1/2$. We have to ascertain that $x \neq 3$. To do this assume it is and observe that we would get $3 = \frac{6y}{2y-1}$ which solves to get 6y - 3 = 6y or -3 = 0, a contradiction.

(c) Find the algebraic rule for $f^{-1}(y)$.

Solution: We wish to find $f^{-1}(y)$ with the property that $f(f^{-1}(y)) = y$. But this means

$$\frac{f^{-1}(y)}{2f^{-1}(y) - 6} = y$$

Solving this yields

$$f^{-1}(y) = \frac{6y}{2y - 1}$$

(d) Explain what you have shown about the cardinalities of $\mathbb{R} - \{3\}$ and $\mathbb{R} - \{1/2\}$. [5 pts]

Answer: We have shown that the cardinalities are equal.

(e) Explain non-rigorously how this idea might be extended to any two sets $\mathbb{R} - \{a\}$ and $\mathbb{R} - \{b\}$ for $a, b \in \mathbb{R}$. [10 pts]

Answer: We can define $f : (\mathbb{R} - \{a\}) \to (\mathbb{R} - \{b\})$ by $f(x) = \frac{bx}{x-a}$ and a similar argument holds showing that these cardinalities are the same.

[5 pts]

[5 pts]

QED

[5 pts]

- 2. Consider the function $f : \mathbb{R} \to [-1, 1]$ given by $f(x) = \sin(x)$.
 - (a) Does this function have an inverse? Explain.

Answer: No it does not since it is not injective. For example $f(0) = f(\pi)$.

(b) By restricting the domain three different ways find three different inverses of f. You do not [10 pts] need to prove they are inverses but sketch them.

Answer: We can restrict the domain a variety of ways. Here are three: $f: [-\pi/2, \pi/2] \rightarrow [-1, 1]$ for which the inverse has graph:

 $f: [\pi/2, 3\pi/2] \rightarrow [-1, 1]$ for which the inverse has graph:

 $f: [3\pi/2, 5\pi/2] \rightarrow [-1, 1]$ for which the inverse has graph:

3. Prove that if $f: A \to B$ and $g: B \to C$ are both injective then so is $g \circ f: A \to C$.

Proof: Suppose $a_1, a_2 \in A$ with $(g \circ f)(a_1) = (g \circ f)(a_2)$. Then $g(f(a_1)) = g(f(a_2))$. Injectivity of g yields $f(a_1) = f(a_2)$ and then injectivity of g yields $a_1 = a_2$.

QED

[5 pts]

[5 pts]

4. Prove that $f : \mathbb{N} \to \mathbb{Z}$ given below is a bijection

$$f(n) = \frac{1 + (-1)^n (2n-1)}{4}$$

Proof: We have two things to show:

• Injectivity: Suppose $a, b \in \mathbb{N}$ with f(a) = f(b). Then

$$\frac{1 + (-1)^a (2a - 1)}{4} = \frac{1 + (-1)^b (2b - 1)}{4}$$
$$(-1)^a (2a - 1) = (-1)^b (2b - 1)$$

Because 2a - 1 and 2b - 1 are both positive and the entire expressions are equal it follows that $(-1)^a$ and $(-1)^b$ must be the same sign and so we can cancel to get 2a - 1 = 2b - 1 and so a = b.

QED

• Surjectivity: Suppose $y \in \mathbb{Z}$. We desire to find an n so that f(n) = y. In other words

$$\frac{1 + (-1)^n (2n-1)}{4} = y$$
$$(-1)^n (2n-1) = 4y - 1$$

The parity of n is the only thing that can influence the sign so we must look at the parity of 4y - 1. Note that this is either positive or negative but never 0 since $y \in \mathbb{Z}$.

- If 4y-1 > 0 then n must be even so we put n = 2k for $k \in \mathbb{Z}$ and we get 2(2k)-1 = 4y-1and so k = y and then n = 2y.
- If 4y 1 < 0 then *n* must be odd so we put n = 2k + 1 for $k \in \mathbb{Z}$ and we get -(2(2k + 1) 1) = 4y 1 or -4k 1 = 4y 1 and so k = -y and then n = 2(-y) + 1 = -2y + 1.

[10 pts]

5. Suppose A is countably infinite. Prove that $A \times \{1, 2\}$ is also countable.

Note: I'll accept any reasonable explanation provided you make it clear either with a function or with a coherent and convincing listing of elements.

Proof 1: Since A is countably infinite we know A can be listed as a_1, a_2, a_3, \dots This leads to a nice listing of $A \times \{1, 2\}$ as:

$$(a_1, 1), (a_1, 2), (a_2, 1), (a_2, 2), (a_3, 1), (a_3, 2), \dots$$

Proof 2: Alternately we can be more formal. Since A is countably infinite we know there is a bijection $f : \mathbb{N} \to A$ so then we define a function $f : \mathbb{N} \to A \times \{1, 2\}$ by

$$g(n) = \left(\lceil n/2 \rceil, \frac{3}{2} + \frac{1}{2} (-1)^n \right)$$

This function is also a bijection.

QED

QED

6. Prove that $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Note: I'll accept any reasonable explanation provided you make it clear either with a function or with a coherent and convincing listing of elements.

Proof: Like with the rationals (in class) we can put $|\mathbb{N} \times \mathbb{N}|$ into a grid and follow the snaking diagram to define a function $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$ which is a bijection:

[10 pts]

[10 pts]