- 1. True or false: Determine if the following are true or false. If false provide a counterexample. [20 pts] You do not need to prove anything about the counterexamples, just provide them.
 - (a) If a set has a supremum then it has a maximum.
 - (b) If $f:[a,b] \to \mathbb{R}$ is differentiable on (a,b) then it is integrable on [a,b].
 - (c) If $f : [a, b] \to \mathbb{R}$ is integrable on every [c, d] with a < c < d < b then f is integrable.
 - (d) The Taylor polynomial $P_n(x)$ for a polynomial f(x) of degree k equals f(x) if $n \ge k$.
- 2. Prove that if $f : [a, b] \to \mathbb{R}$ is continuous then f is bounded. This should be done by appealing [15 pts] to the definitions of *continuous* and *bounded*, not with a theorem.
- 3. Prove that for b > 0 and $n \in \mathbb{N}$ we have $\left(\frac{1}{n} + b\right)^n \ge b^n + b^{n-1}$. [15 pts]
- 4. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 + 2$. Verify the $\epsilon \delta$ criterion for continuity of f(x) at x = 3. [15 pts]
- 5. Prove that $S \subseteq \mathbb{R}$ is dense iff $\forall x \in \mathbb{R}$ and $\forall \epsilon > 0$ there exists $s \in S$ within ϵ of x. [15 pts]

[15 pts]

6. Define $f: [0,4] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,2] \\ 2+x & \text{if } x \in (2,4] \end{cases}$$

Find a formula not involving integrals for $F(x) = \int_0^x f$ and explain how you know that F is not an antiderivative of f.

- 7. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$. Use the limit definition of the derivative and the sequence [10 pts] definition of the limit to find f'(2). Do not assume that the function is differentiable at 2.
- 8. Suppose $f, g: [0, \infty) \to \mathbb{R}$ are continuous functions such that f(0) = g(0) and f'(x) > g'(x) [15 pts] for all x > 0. Prove that f(x) > g(x) for all x > 0.
- 9. Assume that h'(1) exists. Prove that $\lim_{x \to 1} \frac{h(x^2) h(1)}{x 1} = 2h'(1)$. [10 pts]
- 10. Use the Taylor Polynomial construction to construct a polynomial of degree 3 around $x_0 = 1$ [10 pts] which approximates the solution to the initial value problem f''(x) + xf'(x) x = f(x) with f(1) = 1 and f'(1) = 2.
- 11. Define $\{f_n : \mathbb{R} \to \mathbb{R}\}$ by $f_n(x) = \frac{nx}{nx^2+1}$. Find the function $f : [-1, 1] \to \mathbb{R}$ to which $\{f_n\}$ [15 pts] converges pointwise and show the convergence is not uniform.
- 12. Define $f : [0,1] \to \mathbb{R}$ by $f(x) = \sqrt{x+1}$. Using our proof of the Weierstrass Approximation [15 pts] Theorem which degree polynomial would suffice for approximating f(x) to within $\epsilon = 0.1$? Write down this polynomial in Σ form.
- 13. Use a Taylor polynomial to calculate $\sin(0.5)$ to within 0.01. [15 pts]

14. Define
$$f_n : [-1,1] \to \mathbb{R}$$
 by $f_n(x) = \sum_{k=1}^n \frac{x^k}{k^2 3^k}$. Show that $\{f_n\}$ converges uniformly. [15 pts]