- 1. True or false: Determine if the following are true or false. If false provide a counterexample. [20 pts] You do not need to prove anything about the counterexamples, just provide them.
 - (a) The product of two irrational numbers is irrational.
 - (b) If $f : [a, b] \to \mathbb{R}$ is integrable on [a, b] then it is differentiable on (a, b).
 - (c) The Taylor Polynomial for a polynomial equals that polynomial.
 - (d) All polynomials are differentiable everywhere.
- 2. Suppose that $f:(a,b) \to \mathbb{R}$ is uniformly continuous. Show that f is bounded. [15 pts]
- 3. Prove using Mathematical Induction that $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}.$ [15 pts]
- 4. Using only the Archimedian Principle prove that $\left\{\frac{3}{\sqrt{n}} + \frac{1}{n^2} + 2\right\}$ converges. [15 pts]
- 5. Prove that $S \subseteq \mathbb{R}$ is dense iff $\forall x \in \mathbb{R}$ there is a sequence $\{x_n\}$ in S which converges to x. [15 pts]
- 6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is such that f(2) = 3, f'(2) = 0 and $f''(x) \ge 3$ for all $x \in [0, 4]$. Find a [15 pts] lower bound on f(4).

[10 pts]

7. Define $f: [0,2] \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 & \text{if } 0 \le x \le 1\\ x & \text{if } 1 < x \le 2 \end{cases}$$

Using the limit definition of the derivative and the sequence definition of the limit prove that f'(1) does not exist.

- 8. Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable at $x_0 \in (a, b)$ and $f'(x_0) > 0$. Prove there is a neighborhood [15 pts] I of x_0 such that for $x \in I$ we have $x < x_0 \Rightarrow f(x) < f(x_0)$ and $x > x_0 \Rightarrow f(x) > f(x_0)$.
- 9. Suppose f(4) = 3 and $F(x) = \int_0^x (x t) f(t^2) dt$. Find F'(2). [10 pts]
- 10. Show that the Taylor expansion of $f(x) = \sin(4x)$ around any x_0 converges for all x. [10 pts]
- 11. Define $f_n : [3, \infty) \to \mathbb{R}$ by $f_n(x) = \frac{1}{nx+1}$. Find the function $f : [3, \infty) \to \mathbb{R}$ to which $\{f_n\}$ [15 pts] converges pointwise and then show this convergence is uniform.
- 12. Define $f : [0,1] \to \mathbb{R}$ by $f(x) = \frac{1}{x+1}$. Using our proof of the Weierstrass Approximation [15 pts] Theorem find the minimum degree polynomial which approximates f(x) uniformly within $\epsilon = 0.1$ and write this polynomial in Σ form.
- 13. Use Taylor Polynomials to prove that $\int_0^1 e^{(x^2)} dx \ge \frac{4}{3}$. [15 pts]
- 14. Show that $\sum_{k=1}^{\infty} \frac{3}{k^4 5^k}$ converges using the Weierstrass Convergence Criterion. [15 pts]