*

*

*

*

**

- 1. Explain in full sentences how the method of proof by contradiction would be applied to prove * that $P \to Q$.
- 2. Negate each of the following quantified statements, passing the negation through as far as possible.
 - (a) $\forall x \in \mathbb{R}, P(x)$
 - (b) $\exists x \in \mathbb{Z}, (Q(x) \land R(x))$
 - (c) $\forall \epsilon \in \mathbb{R}^+, \exists n \in \mathbb{N}, P(\epsilon, n)$
 - (d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, (P(x, y) \to Q(x, y))$
- 3. Fill in the following table. If a set does not have the entry specified write "None". No proof is necessary.

Set	Inf	Min	Max	Sup
[0,2)				
$ \{x \in \mathbb{Q} \mid x \ge \sqrt{3}\} $				
$[-1,1] \cap \mathbb{Q}$				
$\left\{ x \mid x < x^2 \right\}$				
$\{, -3, -2, -1, 0, 1\}$				
$\{0.5^n \mid n \in \mathbb{N}\}$				

4. Consider the set $S = \{x \in \mathbb{R} \mid x^2 < 2\}.$

(a) Prove that $\sqrt{2}$ is an upper bound for S.	
(b) Prove by contradiction that $\sqrt{2}$ is the least upper bound for S.	**
5. Prove that if $S \subseteq T \subseteq \mathbb{R}$ and if T is bounded above then $\sup S \leq \sup T$.	
6. Suppose that S is a bounded nonempty set of real numbers. Prove that $\inf S \leq \sup S$.	
7. Which of the following is true and which is false. Provide proof.	
(a) If $S \subseteq \mathbb{R}$ has no maximum then for all $x \in \mathbb{R}$ we can find some $s \in S$ with $s > x$.	*
(b) If $S \subseteq \mathbb{R}$ has no supremum then for all $x \in \mathbb{R}$ we can find some $s \in S$ with $s > x$.	*