**

*

*

**

1. For each of the following f defined on [a, b] first find a formula for $F(x) = \int_a^x f(t) dt$ for $x \in [a, b]$ which does not involve integrals. Then sketch the graph of F(x).

(a)
$$f: [0, 10] \to \mathbb{R}$$
 defined by
$$\begin{cases} x+1 & \text{for } x \in [0, 5] \\ 6 & \text{for } x \in (5, 10] \end{cases}$$
**

(b)
$$f: [-1,1] \to \mathbb{R}$$
 defined by
$$\begin{cases} 2 & \text{for } x \in [-1,0] \\ x+1 & \text{for } x \in (0,1] \end{cases}$$
**

- 2. One of the previous problem's F(x) is not an antiderivative of the f. Identify which is not and ** explain why not.
- 3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ has continuous second derivative. Prove that

$$f(x) = f(0) + f'(0)x + \int_0^x (x-t)f''(t) dt$$
 for all x

Note: There's a hint somewhere in the book.

4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ has a second derivative and that

$$f''(x) - f'(x) + xf(x) = x^2$$

f(1) = 3
f'(1) = -2

- (a) Find and simplify $P_3(x)$ at $x_0 = 1$.
- (b) Use your answer to (a) to approximate f(1.1). Simplify. *
- (c) Use your answer to (a) to approximate $\int_{0.9}^{1.1} f$. Simplify.
- 5. Prove that

$$1 + \frac{x}{3} - \frac{x^2}{9} < (1+x)^{1/3} < 1 + \frac{x}{3} \quad \text{for } x > 0$$

6. Suppose that each of $f, g : \mathbb{R} \to \mathbb{R}$ has n + 1 continuous derivatives. Prove that f and g have ** contact of order n at x = 0 if and only if

$$\lim_{x \to 0} \frac{f(x) - g(x)}{x^n} = 0$$