**

**

- 1. Suppose $a, b \in \mathbb{R}^+$. Prove that the Taylor expansion of $f(x) = a^{bx}$ around any x_0 converges ** for all x.
- 2. Let $x_0 \in \mathbb{R}^+$ and define $f : \mathbb{R} \{0\} \to \mathbb{R}$ by $f(x) = \frac{1}{x}$.
 - (a) Find $p_n(x)$ around x_0 . Use the geometric sum formula

$$\sum_{k=0}^{n} z^{k} = \frac{1 - z^{k+1}}{1 - z}$$

to simplify $p_n(x)$ as much as possible.

(b) Show directly that for every $n \in \mathbb{N}$ we have

$$f(x) - p_n(x) = \frac{\left(1 - \frac{x}{x_0}\right)^{n+1}}{x}$$

- (c) Use part (b) to prove that f(x) equals its Taylor Expansion iff $x \in (0, 2x_0)$.
- 3. For each of the following write down and expression for the remainder using both the Lagrange remainder and the Cauchy remainder formulas. For the former clarify what value c could be. Simplify as much as possible (don't integrate the latter).

(a)
$$f(x) = \sqrt{x}, x_0 = 4, R_4(4.5).$$
 *
(b) $f(x) = \cos(x), x_0 = \pi, R_7(3).$ *

- 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ has derivatives of all order and all are continuous. Furthermore suppose ** $\{a_n\}$ is a bounded sequence and f has the property that $|f^{(n)}(x)| \leq a_n$ for all x. Use the Cauchy Remainder Formula to show that f equals its Taylor Expansion.
- 5. Use the result of problem 4 from section 8.5 of the book to show that the CRT implies the *** LRT if $f^{(n+1)}: I \to \mathbb{R}$ is assumed to be continuous. That is, prove that

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt$$

implies

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!} (x-x_0)^{n+1}$$
 for some c_x between x_0 and x

- 6. Show that the Approximation Theorem does not hold if we replace I by a bounded open ** interval (a, b) by showing that if $f(x) = \frac{1}{b-x}$ for all x then $f: (a, b) \to \mathbb{R}$ cannot be uniformly approximated by polynomials.
- 7. Find the minimum degree of the polynomial constructed via the Approximation Theorem for each of the following functions defined on [0, 1] with $\epsilon = 0.1$.

(a)
$$f(x) = 2 \left| x - \frac{1}{2} \right|$$

(b) $f(x) = 2^x$
