- 1. For each of the following series determine convergence by finding an expression for the n^{th} partial sum and then taking the limit.
 - (a) $\sum_{k=1}^{\infty} 5(0.2)^{2k-1}$ * (b) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ * (c) $\sum_{k=1}^{\infty} k$ *
- 2. Use the Cauchy Convergence Criterion for Series to show that the series $\sum_{k=1}^{\infty} (0.3)^k$ converges. **
- 3. For each $n \in \mathbb{N}$ and $x \in [-1, 1]$ define $f_n(x) = x^{1/(2n-1)}$. Find the function $f : [-1, 1] \to \mathbb{R}$ to ** which the sequence $\{f_n\}$ converges pointwise and prove that it does so. Include some sketches of some f_n and of f. Show that this convergence is not uniform.
- 4. For each $n \in \mathbb{N}$ and $x \in [2, \infty)$ define $f_n(x) = \frac{1}{1+x^n}$. Find the function $f : [2, \infty) \to \mathbb{R}$ to ** which the sequence $\{f_n\}$ converges pointwise and prove that it does so. Include some sketches of some f_n and of f. Show that this convergence is uniform.
- 5. For each $n \in \mathbb{N}$ and $x \in (-1,1)$ define $p_n(x) = x + x(1-x^2) + \dots + x(1-x^2)^n$. Find the ** function $f: (-1,1) \to \mathbb{R}$ to which the sequence $\{p_n\}$ converges pointwise and prove that it does so.
- 6. Suppose that I is a closed and bounded interval and $f: I \to \mathbb{R}$ is continuous. Prove that there * is a sequence of functions $\{f_n: I \to \mathbb{R}\}$ which converges uniformly to f.
- 7. For each $n \in \mathbb{N}$ and $x \in \mathbb{R}$ define

$$f_n(x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!}$$

For each r > 0 prove the sequence of functions $\{f_n : [-r, r] \to \mathbb{R}\}$ is unformly convergent using the Weierstrass Uniform Convergence Criterion.

8. For each $n \in \mathbb{N}$ and $x \in (-1, 1)$ define

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

and define f(x) = |x|. Prove that $\{f_n\}$ converges uniformly to f. Prove that each f_n is continuously differentiable whereas f is not. Explain why this does not contradict Theorem 9.33 in the book.

9. For each $n \in \mathbb{N}$ and $x \in [0, 1]$ define $f_n(x) = nxe^{-nx^2}$. Prove that $\{f_n\}$ converges pointwise ** to the function 0 but that the sequence of integrals $\{\int_0^1 f_n\}$ does not converge to 0. Explain why this does not contradict Theorem 9.32 in the book.

**
